1) Пусть одна часть равна х, тогда АВ=3х, ВС=4х.14х=42, По условию 3х+4х+3х+4х=42, 14х=42, х=42/14=3. АВ=3·3=9 см; ВС=4·3=12 см. ответ: АВ=9 см; ВС=12 см; СD=9 см; АD=12 см. 2) ΔDЕС - равнобедренный; DЕ=ЕС (по условию); Углы при основании равны ∠ЕDС=∠ЕСD. ∠ЕСD=∠СDМ ( ЕF║DМ; СD - секущая, углы разносторонние равны). ∠ЕDС=∠СDМ, значит DС делит угол на две равные части, DС - биссектриса угла ЕОМ. Ч.Т.Д. 3) смотри рисунок 3) DЕ=ЕС= FМ=6 см. ЕF= 6+13=19 см. Стороны параллелограмма равны 19 см и 6 см. Р(DЕFМ)=2(19+6)=50 см.
1) Узнаем площадь шестиугольника по формуле:
Sшестиуг = 3*корень из 3/2 * R2, радиус шестиугольника = стороне =2
Sшестиуг = 2,6 * 4 = 10,4
2) узнаем площадь каждого сегмента из 6 кругов,радиус которых=корень из 2
Cумма внутренних углов шестиуг=720град
Угол альфа каждого сегмента=120град
S cегм=R2/2(п* угол а/180 - sin a)
S cегм = (корень из 2 в квадрате/2) * (3,14 * 120/180 - sin120)
S cегм= 3,14 *2/3-0,866=2,09-0,866=1,2
Scегмента=1,2
3) 1,2 * 6 = 7,2 - площадь 6 сегментов
4) S шестиуг - S сегм = 10,4 - 7,2 = 3,2 - площадь части шестиугольника,расположенная вне части углов.
По условию 3х+4х+3х+4х=42,
14х=42,
х=42/14=3. АВ=3·3=9 см; ВС=4·3=12 см.
ответ: АВ=9 см; ВС=12 см; СD=9 см; АD=12 см.
2) ΔDЕС - равнобедренный; DЕ=ЕС (по условию); Углы при основании равны ∠ЕDС=∠ЕСD.
∠ЕСD=∠СDМ ( ЕF║DМ; СD - секущая, углы разносторонние равны).
∠ЕDС=∠СDМ, значит DС делит угол на две равные части, DС - биссектриса угла ЕОМ. Ч.Т.Д.
3) смотри рисунок 3) DЕ=ЕС= FМ=6 см.
ЕF= 6+13=19 см. Стороны параллелограмма равны 19 см и 6 см.
Р(DЕFМ)=2(19+6)=50 см.