Трапеция равнобокая => ее боковые стороны равны. Опустим из концов меньшего основания перпендикуляры на большее основание и рассмотрим любой из образовавшихся треугольников (они равны). Это будет прямоугольный треугольник с двумя углами по 45°, гипотенуза которого равна 8 см. Либо через косинус 45°, либо через теорему Пифагора высчитываем, что катеты прямоугольника равны 4√2 см.
Теперь рассмотрим все большее основание. Отрезок между перпендикулярами равен меньшему основанию, т.е. 6 см, а два оставшихся отрезка равны по 4√2 см. Значит, большее основание = 6 см + 2* 4√2 см = 6 + 8√2 см
6 + 8√2 см
Объяснение:
Трапеция равнобокая => ее боковые стороны равны. Опустим из концов меньшего основания перпендикуляры на большее основание и рассмотрим любой из образовавшихся треугольников (они равны). Это будет прямоугольный треугольник с двумя углами по 45°, гипотенуза которого равна 8 см. Либо через косинус 45°, либо через теорему Пифагора высчитываем, что катеты прямоугольника равны 4√2 см.
Теперь рассмотрим все большее основание. Отрезок между перпендикулярами равен меньшему основанию, т.е. 6 см, а два оставшихся отрезка равны по 4√2 см. Значит, большее основание = 6 см + 2* 4√2 см = 6 + 8√2 см
а) Опустим высоту АН из вершины угла, и рассмотрим получившийся прямоугольный треугольник АВН,
{< - угол}
<Н=90°, по определению прямоугольного треугольника, зная сумму всех углов этого треугольника, найдем <ВАН
<ВАН=90°-60°=30°
Против угла в 30° лежит катет равный половине гипотенузы, а значит ВН=0,5*3=1,5
Найдем АН по теореме Пифагора
Найдем НС, зная ВН и ВС,
Рассмотрим треугольник АСН, прямоугольный,
Отсюда,
б) Периметр треугольника равен сумме сторон,
в)Площадь треугольника равна половине произведения АВ на НС и на SinB
или
г) Радиус окружности можно вывести из формулы