Постройте сечение параллелепипеда ABCDA1B1C1D1 - прямоугольники. а) Постройте сечение параллелепипеда плоскостью проходящей через точки D,M,P и C, если М - середина A1D1,P - середина B1C1.
б) Найдите периметр сечения, если AB=3см, AD=6см, DD1=4см
в) Докажите параллельность прямых MD и PC.
Запишем дано.
Нам задана равнобедренная трапеция ABCD.
Основания трапеции равны AD = a = 9 ед и BC = 4 ед.
Так как трапеция равнобедренная то боковые стороны между собой равны и мы можем записать, что AB = CD = c.
AD + BC = AB + CD;
так как AD = a = 9; BC = b = 4; AB = CD = c, запишем равенство:
a + b = c + c;
a + b = 2c;
9 + 4 = 2c;
Из полученного линейного уравнения находим значение боковой стороны с:
2c = 13;
с = 6,5 ед.
Для нахождения площади трапеции будем использовать формулу:
S = (p - c)√(p - a)(p - b), где p — полу периметр трапеции.
Найти полу периметр трапеции можно по формуле:
p = (a + b + 2c)/2;
Подставляем в формулу найденные значение длин сторон и находим полу периметр.
p = (9 + 4 + 2 * 6.5)/2 = (9 + 4 + 13)/2 = 26/2 = 13 ед.
Для нахождения площади трапеции все параметры найдены. Подставляем их в формулу и вычисляем:
S = (p - c)√(p - a)(p - b) = (13 - 6.5)√(13 - 9)(13 - 4) = 6.5 * √4 * 9 = 6.5 * √36 = 6.5 * √6^2 = 6.5 * 6 = 39 кв. ед.
ответ: 39 кв. ед.
Следовательно, √3*R²/4=D/6 => R²=2D√3/9.
R=√(2D√3)/3
По Пифагору квадрат диагонали вписанного квадрата равен
(2R)²=2а², где а - сторона квадрата.
а=2R/√2 = R√2, а площадь - S= а² =2R² .
Подставим найденное значение R, тогда
сторона вписанного квадрата:
а=√(2D√3/9)*√2=√(4D√3)/3.
площадь вписанного квадрата:
S=a²= 4D√3/9.