В тр-ках ABC и ACD опустим перпендикуляры на сторону AC. Очевидно, они упадудт в одну точку, т. к. тр-ки равнобедренные. Назовем эту точку H. В тр-ке BDH угол BDH - прямой (т. к. BD перпендикулярна плоскости ACD).
Найдем BH: в тр-ке ABC по т-ме Пифагора BH^2+6^2=4*21; BH=4*sqrt(3) //sqrt - это знак корня, т. е. 4 корня из трех.
Найдем AD: в тр-ке ADC по т-ме Пифагора 2*AD^2=12^2; AD=6*sqrt(2). //Не забываем, что AD=AC.
Найдем DH исходя из площади тр-ка ADC: DH*12=AD*AC; DH*12=36*2; DH=6.
В прямоугольном тр-ке BDH (угол BDH - прямой) гипотенуза равна 4*sqrt(3), а катет HD=6. Отсюда угол BHD=arccos(6/(4*sqrt(3))=arccos(sqrt(3)/2)=pi/6=30градусов.
ответ: 30 градусов.
2. Поступаем аналогично 1-й задаче: вначале опускаем перпендикуляры BH и DH на сторону AC. Далее по т-ме Пифагора находим DH:
DH^2=6^2+61; DH=sqrt(97) Далее по т-ме Пифагора находим BH: BH^2=10^2+6^2; BH=2sqrt(34).
Треугольники МОЕ и РОК равны по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. МО = ОР, ЕО = ОК – по условию; угол МОЕ = углу РОК – как вертикальные (вертикальные углы равны). Из равенства треугольников МОЕ и РОК следует, что углы Е и К равны. Углы Е и К – внутренние накрест лежащие при прямых МЕ, РК и секущей ЕК. По признаку параллельности прямых
В тр-ках ABC и ACD опустим перпендикуляры на сторону AC. Очевидно, они упадудт в одну точку, т. к. тр-ки равнобедренные. Назовем эту точку H. В тр-ке BDH угол BDH - прямой (т. к. BD перпендикулярна плоскости ACD).
Найдем BH: в тр-ке ABC по т-ме Пифагора BH^2+6^2=4*21; BH=4*sqrt(3) //sqrt - это знак корня, т. е. 4 корня из трех.
Найдем AD: в тр-ке ADC по т-ме Пифагора 2*AD^2=12^2; AD=6*sqrt(2). //Не забываем, что AD=AC.
Найдем DH исходя из площади тр-ка ADC: DH*12=AD*AC; DH*12=36*2; DH=6.
В прямоугольном тр-ке BDH (угол BDH - прямой) гипотенуза равна 4*sqrt(3), а катет HD=6. Отсюда угол BHD=arccos(6/(4*sqrt(3))=arccos(sqrt(3)/2)=pi/6=30градусов.
ответ: 30 градусов.
2. Поступаем аналогично 1-й задаче: вначале опускаем перпендикуляры BH и DH на сторону AC.
Далее по т-ме Пифагора находим DH:
DH^2=6^2+61; DH=sqrt(97)
Далее по т-ме Пифагора находим BH:
BH^2=10^2+6^2; BH=2sqrt(34).
Отсюда по т-ме косинусов в тр-ке DBH считаем BD:
BD^2=(2sqrt(34)^2+sqrt(97)^2-2*2sqrt(34)*sqrt(97)*cos(60))=
BD^2=136+97-2*sqrt(3298)=233-2sqrt(3298).
Далее можно упростить при желании.
Проверьте на всякий случай арифметику.