угол при вершине осевого сечения α=90° , то есть прямой угол. значит образующая конуса наклонена под углом 45° к плоскости основания и сечение выглядит как равнобедренный прямоугольный треугольник.
высота конуса равна радиусу основания конуса ,H=R=6см
так как вершина конуса перпендикулярно основанию конуса, и угол при вершине между высотой и образующей конуса 180°-90°-45°=45°
Отношение сторон треугольника АВD- 12:16:20=3:4:5. Это отношение сторон "египетского" треугольника, значит, ∆ АВD- прямоугольный. (Можно проверить по т.Пифагора)
∆ ВСЕ - прямоугольный по построению, т.к. СЕ⊥BD.
ВС||AD, ⇒ ∠СВD=∠BDA как накрестлежащие. Если острый угол одного прямоугольного треугольника равен острому углу другого, они подобны.
∆ BEC ~ ∆ ABD.
Тогда ∠ВСЕ=∠ВАD, и их тригонометрические функции равны.
Объяснение:
D=2R=12см
α=90°
V- ?
радиус основания конуса
R=D/2=12/2=6 см
угол при вершине осевого сечения α=90° , то есть прямой угол. значит образующая конуса наклонена под углом 45° к плоскости основания и сечение выглядит как равнобедренный прямоугольный треугольник.
высота конуса равна радиусу основания конуса ,H=R=6см
так как вершина конуса перпендикулярно основанию конуса, и угол при вершине между высотой и образующей конуса 180°-90°-45°=45°
объем конуса
V=1/3 ×πR²×H=1/3 ×π×6²×6=72π см³
или V=72π=72×3,14=226,08 см³
Отношение сторон треугольника АВD- 12:16:20=3:4:5. Это отношение сторон "египетского" треугольника, значит, ∆ АВD- прямоугольный. (Можно проверить по т.Пифагора)
∆ ВСЕ - прямоугольный по построению, т.к. СЕ⊥BD.
ВС||AD, ⇒ ∠СВD=∠BDA как накрестлежащие. Если острый угол одного прямоугольного треугольника равен острому углу другого, они подобны.
∆ BEC ~ ∆ ABD.
Тогда ∠ВСЕ=∠ВАD, и их тригонометрические функции равны.
sin ВСЕ=sin A=BD/AD=16/20=0,8
cos ВСЕ=cos A=AB/AD=12/20=0,6
tg BCE=tg A=BD/AB=16/12=4/3