Так если один из углов при основании = 60 градусов, то второй угол при основании тоже равен 60 градусов (св-ва р.б. трапеции), вторая бокова сторона равно 8 см (опять же св-во р.б. трапеции) проводим высоту вн из угла в (допустим трапеция авсд) , получаем прямоугольный треугольник, т.к. мы знаем два угла а=60градусов, и вна равен 90 градусов, то угол авн=30 градусов, значит ан равен 5 см, тк (в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы),если мы проведем из угла с высоту ск, то получим равный авн треугольник, следовательнокд равен 5 см, значит основание равно 8 + 10= 18 теперь периметр 8 + 18 + 10х2 = 46 см проверьте на всякий случай, возможны опечатки , писала второпях :)
1.Плоскость, имеющая с шаровой поверхностью лишь одну общую точку, называется касательной плоскостью, а общая точка — точка касания. Касательная к сфере плоскость перпендикулярна к радиусу, проведенному в точку касания
Из теоремы следует, что, когда расстояние от центра шара до плоскости меньше радиуса, сечение шара этой плоскостью – круг. Если плоскость удалена от центра сферы на расстояние R, то она является касательной плоскостью. Теорема 5.4. Плоскости, равноудаленные от центра сферы, пересекают ее по равным окружностям.
2.Сечение шара представляет собой круг, площадь которого равна Sсеч = πr2, где r - радиус сечения. По условию, площадь сечения шара равна 16π см2, значит:
πr2 = 16π;
r2 = 16;
r = √16 = 4 см.
Из прямоугольного треугольника, образованного радиусом r данного сечения, радиусом шара R и перпендикуляром l, проведенным из центра шара к плоскости, равным 3 см, по теореме Пифагора можем найти радиус шара:
Так если один из углов при основании = 60 градусов, то второй угол при основании тоже равен 60 градусов (св-ва р.б. трапеции), вторая бокова сторона равно 8 см (опять же св-во р.б. трапеции)
проводим высоту вн из угла в (допустим трапеция авсд) , получаем прямоугольный треугольник, т.к. мы знаем два угла а=60градусов, и вна равен 90 градусов, то угол авн=30 градусов, значит ан равен 5 см, тк (в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы),если мы проведем из угла с высоту ск, то получим равный авн треугольник, следовательнокд равен 5 см, значит основание равно 8 + 10= 18
теперь периметр 8 + 18 + 10х2 = 46 см
проверьте на всякий случай, возможны опечатки , писала второпях :)
1.Плоскость, имеющая с шаровой поверхностью лишь одну общую точку, называется касательной плоскостью, а общая точка — точка касания. Касательная к сфере плоскость перпендикулярна к радиусу, проведенному в точку касания
Из теоремы следует, что, когда расстояние от центра шара до плоскости меньше радиуса, сечение шара этой плоскостью – круг. Если плоскость удалена от центра сферы на расстояние R, то она является касательной плоскостью. Теорема 5.4. Плоскости, равноудаленные от центра сферы, пересекают ее по равным окружностям.
2.Сечение шара представляет собой круг, площадь которого равна Sсеч = πr2, где r - радиус сечения. По условию, площадь сечения шара равна 16π см2, значит:
πr2 = 16π;
r2 = 16;
r = √16 = 4 см.
Из прямоугольного треугольника, образованного радиусом r данного сечения, радиусом шара R и перпендикуляром l, проведенным из центра шара к плоскости, равным 3 см, по теореме Пифагора можем найти радиус шара:
R2 = r2 + l2 = 42 + 32 = 16 + 9 = 25;
R = √25 = 5 см.
Площадь поверхности шара определяется по формуле:
S = 4πR2 = 4 * π * 52 = 100π ≈ 314,16 см2.
3. смотри на картинке нашла в интернете