При перетині двох прямих утворюють кути прийому сума двох з них дорівнює 208° . Знайти ці кути до ть оддаю всё что есть Дать повну відповідь фото то нам учитель отправлял там написано как я и писала
Судя по описанию, это - правильная треугольная пирамида.
Нам нужно найти боковое ребро пирамиды
(см. рисунок)
Для начала найдём расстояние от центра треугольника, до любой из его вершин с формулы для нахождения радиуса описанной около правильного треугольника окружности:
R=a/√3 , где a - сторона, равная по условию 6√3
Подставляем R=6√3/√3 = 6 - наш нижний катет прямоугольного треугольника KOB(к примеру)
Теперь нам известны два катета: KO или высота = 8,
Объяснение:
1) aob=180-23=157 градусов(смежные)
aod=boc=23 градуса(вертикальные)
cod=aob=157 градусов(вертикальные)
2)Так как doe=coe(по условию) следовательно угол cod= doe+coe= 32+32=64 градуса
угол boc=180 - угол cod=180-64=116 градусов( смежные)
3)угол eod=aob=55 ( вертикальные)
угол foe=180- eod-doc=180-55-25=100 градусов
4) Так как угол doa+aoc=180 (смежные) следовательно угол cob=210-180=30 градусов
угол dob+cob=180(смежные) значит угол dob=180-30=150 градусов
угол aod=cob=30 (вертикальные)
5)Угол aoc=aob+boc=a(альфа)+b(бетта)
Угол aof=180-aoc=180-a-b(смежные)
6) угол aob=180-foa-boc=180-b-a
eod=aob=180-b-a(вертикальные)
KB = 10
Объяснение:
Судя по описанию, это - правильная треугольная пирамида.
Нам нужно найти боковое ребро пирамиды
(см. рисунок)
Для начала найдём расстояние от центра треугольника, до любой из его вершин с формулы для нахождения радиуса описанной около правильного треугольника окружности:
R=a/√3 , где a - сторона, равная по условию 6√3
Подставляем R=6√3/√3 = 6 - наш нижний катет прямоугольного треугольника KOB(к примеру)
Теперь нам известны два катета: KO или высота = 8,
OB = 6
Найдём гипотенузу KB с теоремы Пифагора:
KB=√(6²+8²) = √(36+64) = √100 = 10