9)Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH). Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x, то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.). Из прямоугольного треугольника BDH по теореме Пифагора находим BH: BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2). ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.). Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH: DH=√DC^-HC^2=6 (см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.). ответ: 54
Пусть биссектриса внешнего угла треугольника при вершине В делит его на равные углы,градусная мера которых - α, тогда углы BCD и α равны (как соответственные углы при параллельных прямых). Но ∠BDC также равен α (как накрест лежащие), то есть треугольник DBC - равнобедренный: BC=DB. В прямоугольном треугольнике DBK DB - гипотенуза, DK - катет, т.е. DB>DK и, так как DB=BC, BC>DK. ответ:BC>DK.
Во второй задаче аналогично доказывается равенство сторон BC и BF и из прямоугольного треугольника BPC получается BC=BF>BP.
Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH).
Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника
DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x,
то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.).
Из прямоугольного треугольника BDH по теореме Пифагора находим BH:
BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2).
ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые.
Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.).
Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH:
DH=√DC^-HC^2=6 (см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.).
ответ: 54
то есть треугольник DBC - равнобедренный: BC=DB.
В прямоугольном треугольнике DBK DB - гипотенуза, DK - катет, т.е. DB>DK и,
так как DB=BC, BC>DK.
ответ:BC>DK.
Во второй задаче аналогично доказывается равенство сторон BC и BF и из прямоугольного треугольника BPC получается BC=BF>BP.