Проведем отрезок BM, соединяющий вершину треугольника с точкой пересечения биссектрис. Биссектрисы треугольника пересекаются в одной точке, тогда отрезок BM является частью биссектрисы ∠B в ∆ABC, значит, ∠ABM = ∠CBM.
Так как AM – биссектриса ∠A, то ∠BAM = ∠MAC, тогда находим ∠A.
∠A = ∠BAM + ∠MAC = 30° + 30° = 60°.
Аналогично, так как CM – биссектриса ∠C, то ∠BCM = ∠ACM, тогда находим ∠С.
Проведем отрезок BM, соединяющий вершину треугольника с точкой пересечения биссектрис. Биссектрисы треугольника пересекаются в одной точке, тогда отрезок BM является частью биссектрисы ∠B в ∆ABC, значит, ∠ABM = ∠CBM.
Так как AM – биссектриса ∠A, то ∠BAM = ∠MAC, тогда находим ∠A.
∠A = ∠BAM + ∠MAC = 30° + 30° = 60°.
Аналогично, так как CM – биссектриса ∠C, то ∠BCM = ∠ACM, тогда находим ∠С.
∠С = ∠BCM + ∠ACM = 20° + 20° = 40°.
По теореме о сумме углов треугольника в ∆ABC:
∠A + ∠С + ∠B = 180°, следовательно ∠B = 180° – (∠A + ∠С) = 180° – (60° + 40°) = 180° – 100° = 80°.
Тогда находим ∠ABM.
∠ABM = 80° : 2 = 40°.
ответ: ∠ABM = 40°.
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1