Продовження бічних сторін AB і CD трапеції ABCD перетинаються в точці M. Знайдіть площу трапеції, якщо BC : AD = 2 : 5, а площа трикутника BMC дорівнює 12 см в квадраті.
Так как треугольник равнобедренный, то у него две стороны равны (значит, либо две по 14 см и основание 6 или две по 6 и основание 14 см) Но по свойству сторон треугольника (длина каждой стороны треугольника меньше суммы длин двух других сторон) можно посчитать, что если две стороны по 6 см, тогда их сумма равна 12 см, а это МЕНЬШЕ чем 14, а должно быть наоборот. Значит вариант, когда две боковые стороны по 6 см неверен. А вариант две боковые стороны по 14 и 6 см - основание, есть правильным. ответ: длина основания 6 см, длина боковых сторон 14 см каждая.
1.Треугольник ABD = 1. Угол ВАD = CAD
2. BDA=CDA
треугольнику ADC
3.AD - общая сторона.
Второй признак равенства
треугольников
2.
Углы 1 и 2 вертикальные, значит они
равны, следовательно треугольники, по двум углам и стороне, равны. Исходя из этого, СD делиться попалам в точки О
3.
<АСО=<1 как вертикальные углы.
<BDO=<2 как вертикальные углы. Но
<1=<2, значит
<ACO=<BDO.
<AOC=<BOD как вертикальные углы.
Значит, треугольники АСО и BDO
равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней
углам другого треугольника: - ОС=ОD по условию;
- <ACO=<BDO как доказано выше;
.<AOC=<BOD как доказано выше. У равных треугольников АСО и BDO равны соответственные углы А и В.
4.
Но по свойству сторон треугольника (длина каждой стороны треугольника меньше суммы длин двух других сторон) можно посчитать, что если две стороны по 6 см, тогда их сумма равна 12 см, а это МЕНЬШЕ чем 14, а должно быть наоборот. Значит вариант, когда две боковые стороны по 6 см неверен. А вариант две боковые стороны по 14 и 6 см - основание, есть правильным.
ответ: длина основания 6 см, длина боковых сторон 14 см каждая.