произвольный треугольник имеет два равных угла. третий угол в этом треугольнике равен 46“. из равных углов проведены биссектрисы. найди меньший угол, который образовывается при пересечении этих биссектрис.
1) Для начала построим данное сечение: Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками: а) Можно соединять только две точки, лежащие в плоскости одной грани. Точки В и С лежат в одной плоскости, значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы. Точки В и К лежат в одной плоскости → получаем отрезок ВК б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам. Грани ВВ1С1С и АА1D1D параллельны В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 ) Через точку К проводим прямую, паралельную прямой ВС → получаем точку L. Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 ) Точки C и L лежат в одной плоскости → получаем отрезок CL
Из этого следует, что четырёхугольник BCLK – данное по условию сечение.
АВСD – равнобедренная трапеция → АВ = CD Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1 Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL. Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )
2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС. Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.
3) Площадь трапеции BCLK равна: S bclk = 1/2 × ( KL + BC ) × KM 48 = 1/2 × ( 4 + 8 ) × КМ 48 = 6 × КМ КМ = 8 см
Рассмотрим ∆ АМК (угол КАМ = 90°): cos AMK = AM/KM AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см По теореме Пифагора: КМ² = АМ² + АК² АК² = 8² – 4² = 64 – 16 = 48 АК = 4√3 см АА1 = 2 × AK = 2 × 4√3 = 8√3 см
Обьём прямой призмы рассчитывается по формуле: V ( призмы ) = S осн. × h
V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²
Обозначим за х меньшую сторону параллелограмма. Тогда его большая сторона равна 4х. Периметр равен сумме всех сторон, значит: х + 4х + х + 4х = 20√2 10х = 20√2 х=2√2 Большая сторона в 4 раза больше, значит она равна 4х2√2 = 8√2 Площадь параллелограмма равна произведению его основания на высоту: S = 8√2 x h, где h - высота. Построим высоту. Мы получаем прямоугольный треугольник, у которого известен по условию один из углов - это 45°. Известно, что синус угла прямоугольного треугольника равен отношению его противолежащего катета к гипотенузе. Противолежащий катет в данном случае - это наша высота h, которую мы не знаем. Гипотенуза треугольника - это меньшая сторона параллелограмма, т.е. 2√2. Синус угла 45° равен √2 / 2. sin 45 = h / 2√2. Отсюда находим h: h = sin 45 x 2√2 = √2/2 x 2√2 = √2 x √2 = 2 Находим площадь параллелограмма: S = h x 8√2 = 2 x 8√2 = 16√2
Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками:
а) Можно соединять только две точки, лежащие в плоскости одной грани.
Точки В и С лежат в одной плоскости,
значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы.
Точки В и К лежат в одной плоскости → получаем отрезок ВК
б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам.
Грани ВВ1С1С и АА1D1D параллельны
В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 )
Через точку К проводим прямую, паралельную прямой ВС → получаем точку L.
Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 )
Точки C и L лежат в одной плоскости → получаем отрезок CL
Из этого следует, что четырёхугольник BCLK – данное по условию сечение.
АВСD – равнобедренная трапеция → АВ = CD
Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1
Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL.
Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )
2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС.
Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.
3) Площадь трапеции BCLK равна:
S bclk = 1/2 × ( KL + BC ) × KM
48 = 1/2 × ( 4 + 8 ) × КМ
48 = 6 × КМ
КМ = 8 см
Рассмотрим ∆ АМК (угол КАМ = 90°):
cos AMK = AM/KM
AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см
По теореме Пифагора:
КМ² = АМ² + АК²
АК² = 8² – 4² = 64 – 16 = 48
АК = 4√3 см
АА1 = 2 × AK = 2 × 4√3 = 8√3 см
Обьём прямой призмы рассчитывается по формуле:
V ( призмы ) = S осн. × h
V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²
ОТВЕТ: V ( призмы ) = 192√3 см²
Периметр равен сумме всех сторон, значит:
х + 4х + х + 4х = 20√2
10х = 20√2
х=2√2
Большая сторона в 4 раза больше, значит она равна 4х2√2 = 8√2
Площадь параллелограмма равна произведению его основания на высоту:
S = 8√2 x h, где h - высота.
Построим высоту. Мы получаем прямоугольный треугольник, у которого известен по условию один из углов - это 45°.
Известно, что синус угла прямоугольного треугольника равен отношению его противолежащего катета к гипотенузе. Противолежащий катет в данном случае - это наша высота h, которую мы не знаем. Гипотенуза треугольника - это меньшая сторона параллелограмма, т.е. 2√2. Синус угла 45° равен √2 / 2.
sin 45 = h / 2√2. Отсюда находим h:
h = sin 45 x 2√2 = √2/2 x 2√2 = √2 x √2 = 2
Находим площадь параллелограмма:
S = h x 8√2 = 2 x 8√2 = 16√2