В условии, вероятно, неточность, потому что параллелограмм - это четырехугольник, у которого противоположные стороны параллельны. Это определение, оно не доказывается.
Докажем, что в параллелограмме противоположные стороны попарно равны.
Дано: ABCD - параллелограмм. Доказать: АВ = CD, AD = BC. Доказательство: ∠DAC = ∠BCA как накрест лежащие углы при пересечении AD ║ BC секущей АС. ∠ВАС = ∠DCA как накрест лежащие при пересечении АВ ║ CD секущей АС. АС - общая сторона для треугольников АВС и CDA, значит ΔАВС = ΔCDA по стороне и двум прилежащим к ней углам. В равных треугольниках напротив равных углов лежат равные стороны, значит АВ = CD, AD = BC. Что и требовалось доказать.
Докажем, что в параллелограмме противоположные стороны попарно равны.
Дано: ABCD - параллелограмм.
Доказать: АВ = CD, AD = BC.
Доказательство:
∠DAC = ∠BCA как накрест лежащие углы при пересечении AD ║ BC секущей АС.
∠ВАС = ∠DCA как накрест лежащие при пересечении АВ ║ CD секущей АС.
АС - общая сторона для треугольников АВС и CDA, значит
ΔАВС = ΔCDA по стороне и двум прилежащим к ней углам.
В равных треугольниках напротив равных углов лежат равные стороны, значит АВ = CD, AD = BC.
Что и требовалось доказать.