Проведена хорда, перпендикулярная диаметру окружности. Длина данной хорды равна 36 см, и точка пересечения делит диаметр в отношении 1 : 4. Найди длину диаметра.
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
Гострокутний - всі кути гострі (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2<a2+b2
Прямокутний - один з кутів прямий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2=a2+b2
Тупокутний- один з кутів тупий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2>a2+b2
За сторонами
Різносторонній - всі сторони різні
Рівнобічний- дві сторони рівні (називаються бічними, третя - основою)
Рівносторонній (правильний) - всі сторони рівні
Медіана - відрізок, який сполучає вершину трикутника з серединою протилежної сторони (ділить сторону навпіл). Медіани трикутника перетинаються в одній точці і точкою перетину діляться у відношенні 2:1, починаючи від вершини)
Висота - відрізок, який проведений з вершини трикутника перпендмикулярно до протилежної сторони
Бісектриса, відрізок, який проведено з вершини до протилежної сторони і який ділить кут навпіл. Бісектриси трикутника перетинаються в одній точці і ділять протилежну сторону на відрізки, пропорційні прилеглим сторонам трикутника (якщо АК - бісектриса трикутника АВС, то ВК:КС=АВ:АС)
Середня лінія трикутника - відрізок, який сполучає середини двох сторін трикутника. Середня лінія трикутника паралельна третій стороні трикутника і дорівнює її половині
Гіпотенуза - найбільша сторона прямокутного трикутника (лежить напроти прямого кута), катети - дві інші сторони прямокутного трикутника
Центр кола, описаного навколо трикутника, знаходиться в точці перетину серединних перпендикулярів. В прямокутному трикутнику він знаходиться на середині гіпотенузи
Центр кола, вписаного в трикутник, знаходиться в точці перетину бісектрис трикутника
Объяснение:
Решение
Первый Пусть указанные стороны равны a и 2a. Тогда по теореме косинусов квадрат третьей стороны равен
a2 + 4a2 - 2a . 2a . $\displaystyle {\textstyle\frac{1}{2}}$ = 3a2.
Пусть $ \alpha$ — угол данного треугольника, лежащий против стороны, равной 2a. Тогда по теореме косинусов
cos$\displaystyle \alpha$ = $\displaystyle {\frac{a^{2} + 3a^{2} - 4a^{2}}{2a\cdot a\sqrt{3}}}$ = 0.
Следовательно, $ \alpha$ = 90o.
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
BC1 = $\displaystyle {\textstyle\frac{1}{2}}$AB = BC.
Значит, точка C1 совпадает с точкой C. Следовательно, $ \angle$ACB = 90o.
За кутами
Гострокутний - всі кути гострі (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2<a2+b2
Прямокутний - один з кутів прямий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2=a2+b2
Тупокутний- один з кутів тупий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2>a2+b2
За сторонами
Різносторонній - всі сторони різні
Рівнобічний- дві сторони рівні (називаються бічними, третя - основою)
Рівносторонній (правильний) - всі сторони рівні
Медіана - відрізок, який сполучає вершину трикутника з серединою протилежної сторони (ділить сторону навпіл). Медіани трикутника перетинаються в одній точці і точкою перетину діляться у відношенні 2:1, починаючи від вершини)
Висота - відрізок, який проведений з вершини трикутника перпендмикулярно до протилежної сторони
Бісектриса, відрізок, який проведено з вершини до протилежної сторони і який ділить кут навпіл. Бісектриси трикутника перетинаються в одній точці і ділять протилежну сторону на відрізки, пропорційні прилеглим сторонам трикутника (якщо АК - бісектриса трикутника АВС, то ВК:КС=АВ:АС)
Середня лінія трикутника - відрізок, який сполучає середини двох сторін трикутника. Середня лінія трикутника паралельна третій стороні трикутника і дорівнює її половині
Гіпотенуза - найбільша сторона прямокутного трикутника (лежить напроти прямого кута), катети - дві інші сторони прямокутного трикутника
Центр кола, описаного навколо трикутника, знаходиться в точці перетину серединних перпендикулярів. В прямокутному трикутнику він знаходиться на середині гіпотенузи
Центр кола, вписаного в трикутник, знаходиться в точці перетину бісектрис трикутника
Объяснение: