Давайте сначала рассмотрим две точки и посмотрим, при каких условиях прямая будет равноудалена от них (первый рисунок). Я утверждаю, что так будет, если или она параллельна отрезку, соединяющему эти точки, или проходит через середину этого отрезка.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок). Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
Біріншісін пайдаланып сөйлемдер құрап жаз
шартты және егер ол болмаса.
Егер сіз ерте келсеңіз (сіз / келсеңіз),
маған орын үнемдейсің бе (сен / құтқарасың)?
1
(веб-сайт / ашық емес)
(сізде бар)
пароль
2 Өтінемін
(сен маған қоңырау шал)
(сіз / таба аласыз) менің әмияным?
3
(менің ата-анам / бермейді)
маған кез-келген қалта ақшасы
(1 / өту) менің емтихандарым.
4
(жаңбыр / жаңбыр),
(біз ойнамаймыз) саябақта футбол.
5
(сіз / тәжірибе) көбірек,
(сіз / алмайсыз) ішіне
команда.
Анель 6
(1 / қоңырау шалмаған) сіз
(біз / жетеміз) үйге
кеш. Мен сені оятуды қаламаймын.
7
(көбірек адам / дауыс)
(ол / жоғалтады)
бұл жолы,
сайлау
8
Челси
char
(не / не)
(олар ұпай жинамайды)
Иә, жеткілікті мақсаттар
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок).
Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.