Докажем сначала, что это параллелограмм. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.Пусть точка О1(х;у) середина АС тогдах=(-6+6)/2=0; у=(1-4)/2=-1,5.Пусть точка О2(х;у) середина BD тогдах=(0+0)/2=0; у=(5-8)/2=-1,5.Значит О1 совпадает с О2 - значит ABCD параллелограмм.О(0;-1,5) - точки пересечения его диагоналей.Докажем что это прямоугольник. Если диагонали параллелограмма равны то он прямоугольник.АС^2=(6+6)^2+(-4-1)^2АС^2=12^2+(-5)^2АС^2=144+25AC^2=169AC=13BD^2=(0+0)^2+(-8-5)^2BD^2=0^2+(-13)^2BD^2=0+169BD^2=169BD=13AC=BDABCD - прямоугольник
Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения.
В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16.
S=9*45√3/16=405√3/16