1) Если боковые грани наклонены к основанию под углами α=60 и β=45 градусов, то боковое ребро как линия их пересечения наклонено под углом γ.
Подставим значения тангенсов углов : tg60 = √3, tg45 = 1. tg γ = 1/√((1/3)+1) = √3/2 ≈ 0,866025. Высота параллелепипеда равна длине L бокового ребра, умноженного на синус угла его наклона. Синус угла можно выразить через тангенс: sin γ = tg γ /(1 + tg²γ) = √3/(2√1 + (3/4)) = √3/√7. Н = L*sin γ = 7*√3/√7 = 7* 0,654654 = 4,582576 см. Площадь основания равна So = 2*3 = 6 см². Объём равен V =So*H = 6* 4,582576 = 27,49545 см³.
Подставим значения тангенсов углов : tg60 = √3, tg45 = 1.
tg γ = 1/√((1/3)+1) = √3/2 ≈ 0,866025.
Высота параллелепипеда равна длине L бокового ребра, умноженного на синус угла его наклона.
Синус угла можно выразить через тангенс:
sin γ = tg γ /(1 + tg²γ) = √3/(2√1 + (3/4)) = √3/√7.
Н = L*sin γ = 7*√3/√7 = 7* 0,654654 = 4,582576 см.
Площадь основания равна So = 2*3 = 6 см².
Объём равен V =So*H = 6* 4,582576 = 27,49545 см³.
Объяснение:
Дано: ΔАВС, АВ=ВС=АС; ∠А=∠В=∠С=60°; R=R; а - ?
∠В=60°, тогда ∠АОВ=60*2=120° по свойству центрального и вписанного углов
По теореме косинусов
а²=R²+R²-2*R*R*cosAOB=2R²-2R²*(-1/2)=2R²+R²=3R²
a=√3R²=R√3 ед.