решение:дополнительное построение: проведем диоганаль АС
1) рассмотрим треугольник АВС , т.к. АВ=ВС следовательно треугольник равнобедренный а значит по свойству равнобедренного треугольника угол ВАС = ВСА а т.к. в треугольнике сумма углов = 180 градусов следовательно найдем угол А и С.
(180-69)/2=55,5 градуса
2) аналогично вычисляем угол ДАС и ДСА, получаем (180-135)/2=22,5 градуса
3) из этих вычислений мы сможем получить угол А сложив угол ВАС и ДАС 55,5+22,5=78градусов
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
решение:дополнительное построение: проведем диоганаль АС
1) рассмотрим треугольник АВС , т.к. АВ=ВС следовательно треугольник равнобедренный а значит по свойству равнобедренного треугольника угол ВАС = ВСА а т.к. в треугольнике сумма углов = 180 градусов следовательно найдем угол А и С.
(180-69)/2=55,5 градуса
2) аналогично вычисляем угол ДАС и ДСА, получаем (180-135)/2=22,5 градуса
3) из этих вычислений мы сможем получить угол А сложив угол ВАС и ДАС 55,5+22,5=78градусов
ответ: угол А=78 градусам
Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4 и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.