Задача решается только при условии, что трапеция равнобочная, т.е АВ = СД. поскольку угол Д-60гр., то угол САД равен 30 градусов (180-90-60), известно, что катет лежащий против угла в 30 гр,равен половине гипотенузы, т.е АД. Далее, расмотрим треугольник АВС- он равносторонний, поскольку углы САД и ВСА равны, и углы САД и САВ тоже равны, поскольку АС- биссектриса. Отсюда ясно, что верхнее основание и боковые стороны равны- обозначим их Х А нижнее основание будет 2Х. Тогда систавин и решим уравнение 35= Х+Х+Х+2Х= 5Х Х= 7
Так как прямой угол опирается на диаметр, гипотенуза прямоугольного треугольника является диаметром окружности, описанной около треугольника. Медиана, проведенная из вершины прямого угла - радиус описанной окружности, а т.М - центр окружности. Значит СМ=АМ=10=R Известно, что медиана делит прямой угол в соотношении 1:2, значит: х+2х=90 3х=90 х=30 2х=60 Меньшему катету соответствует больший угол, значит ΔАМС - равнобедренный (АМ=СМ) и угол АСМ= 60 градусов => угол САМ=60 градусов => угол СМА=60 градусов, значит ΔАМС - равносторонний. Меньший катет АС=10.
поскольку угол Д-60гр., то угол САД равен 30 градусов (180-90-60),
известно, что катет лежащий против угла в 30 гр,равен половине гипотенузы, т.е АД.
Далее, расмотрим треугольник АВС- он равносторонний, поскольку углы САД и ВСА равны, и углы САД и САВ тоже равны, поскольку АС- биссектриса.
Отсюда ясно, что верхнее основание и боковые стороны равны- обозначим их Х
А нижнее основание будет 2Х.
Тогда систавин и решим уравнение
35= Х+Х+Х+2Х= 5Х
Х= 7
Известно, что медиана делит прямой угол в соотношении 1:2, значит:
х+2х=90
3х=90
х=30
2х=60
Меньшему катету соответствует больший угол, значит
ΔАМС - равнобедренный (АМ=СМ) и угол АСМ= 60 градусов => угол САМ=60 градусов => угол СМА=60 градусов, значит ΔАМС - равносторонний.
Меньший катет АС=10.