Прямая проходит через точки M(−1;2) и N(0;1). Напиши уравнение этой прямой. (Если коэффициенты отрицательные, вводи их вместе со знаком «−», без скобок.) −1x+y+=0.
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
Дан параллелограмм АВСD. Опустим высоту ВН к стороне AD, равной 8. Катет АН образовавшегося прямоугольного треугольника равен 3, так как лежит против угла 30° (острые углы в сумме равны 90°, а один из них равен 60° - дано). Второй катет равен ВН=√(6²-3²)=√27=3√3. Тогда в прямоугольном треугольнике BHD катет HD = AD-AH = 8-3=5, а гипотенуза BD равна по Пифагору: BD = √(BH²+HD²)=√(27+25)=2√13.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон. Найдем вторую диагональ.
BD²+AC² =2(AB²+BC²) или 52+АС² = 2*100 =200 => АС = √148 = 2√37. 2√37 > 2√13. AC > BD.
ответ: BD = 2√13 см.
А можно диагональ BD (она меньшая, так как в треугольниках АВС и ACD с равными двумя сторонами третья сторона BD лежит против острого угла, а AC - против тупого) найти по теореме косинусов из треугольника АBD: BD² = AB²+AD² - 2*AB*AD*Cos60 = 100-48 = 52.
Построение сечения.
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
ответ в приложенном рисунке.
Дан параллелограмм АВСD. Опустим высоту ВН к стороне AD, равной 8. Катет АН образовавшегося прямоугольного треугольника равен 3, так как лежит против угла 30° (острые углы в сумме равны 90°, а один из них равен 60° - дано). Второй катет равен ВН=√(6²-3²)=√27=3√3. Тогда в прямоугольном треугольнике BHD катет HD = AD-AH = 8-3=5, а гипотенуза BD равна по Пифагору: BD = √(BH²+HD²)=√(27+25)=2√13.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон. Найдем вторую диагональ.
BD²+AC² =2(AB²+BC²) или 52+АС² = 2*100 =200 => АС = √148 = 2√37. 2√37 > 2√13. AC > BD.
ответ: BD = 2√13 см.
А можно диагональ BD (она меньшая, так как в треугольниках АВС и ACD с равными двумя сторонами третья сторона BD лежит против острого угла, а AC - против тупого) найти по теореме косинусов из треугольника АBD: BD² = AB²+AD² - 2*AB*AD*Cos60 = 100-48 = 52.
BD = √52 = 2√13 см.