Рассмотрим треугольник АВТ. Угол ТАВ = 30 град. Катет, лежащий против угла 30 град., равен половине гипотенузы, т.е.ВТ = АМ = МВ. Отсюда треуголник МВТ равнобедренный. Поскольку углы при основании равны, а угол АВТ = 60 град, то и угол ВТМ = углу ТМВ = 120 : 2 = 60 град. Значит треуголник МВТ равносторонний. В треуголнике АВС углы при основании равны. Тогда в теуголнике ВСТ угол ТВС = 90 - 30 = 60 град. Треугольники МВТ и NВТ равны, поскольку МВ=ВN, ВТ - общая и углы МВТ и NВТ = 60 град. А значит оба треугольники равносторонние. Отсюда TM + TN = AB = BC
основание пирамиды – равнобедренный прямоугольный треугольник авс, угол с=90°, ас=вс=6 см. высота пирамиды - третье из смежных попарно перпендикулярных ребер=8 см.
площадь полной поверхности – сумма площади основания и площадей боковых граней.
s осн=ас•bc: 2=18 см²
грани амс=вмс по равенству катетов.
s ∆ amc=s ∆ bmc=6•8: 2=24
s amb=mh•ab: 2
ab=ac: sin45°=6√2
ch высота и медиана ∆ асв, сн=ав: 2=3√2
высота mh большей боковой грани s=√(ch*+mh*)=√(18+64)=√82
В треуголнике АВС углы при основании равны. Тогда в теуголнике ВСТ угол ТВС = 90 - 30 = 60 град.
Треугольники МВТ и NВТ равны, поскольку МВ=ВN, ВТ - общая и углы МВТ и NВТ = 60 град. А значит оба треугольники равносторонние. Отсюда TM + TN = AB = BC
ответ:
основание пирамиды – равнобедренный прямоугольный треугольник авс, угол с=90°, ас=вс=6 см. высота пирамиды - третье из смежных попарно перпендикулярных ребер=8 см.
площадь полной поверхности – сумма площади основания и площадей боковых граней.
s осн=ас•bc: 2=18 см²
грани амс=вмс по равенству катетов.
s ∆ amc=s ∆ bmc=6•8: 2=24
s amb=mh•ab: 2
ab=ac: sin45°=6√2
ch высота и медиана ∆ асв, сн=ав: 2=3√2
высота mh большей боковой грани s=√(ch*+mh*)=√(18+64)=√82
s∆amb=6√2•√82=6√164=12√41
s полн=18+2•24+12√41=66+12√41
объяснение: