Прямоугольная трапеция с основаниями 4 и 7 и меньшей боковой стороной 4 вращается вокруг меньшей стороны. Найдите значение элементов усеченного конуса.
ВА = СД ( стороны квадрата), АМ = СК ( по условию), значит ВМ=КД = 4 -1 = 3 см
Если ВМ = КД и ВМ || КД ( ВА || СД ( стороны квадрата), то МВКД – параллелограмм (если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм)
Треугольник МДА – прямоугольный ( угол А = 90 град.)
Найдем МД по теореме Пифагора:
МД^2 = MA^2+ AD^2
MD^2 = 9+ 16 = 25
MD = 5
Прведем прямую через пункт К поралллельно АД, обозначим ее КО
КО= AD= 4 см ( АВСД – квадрат)
Периметр МВКД = (5+1)*2 = 12 см
Площадь МВКД = КО* МВ = 4*1 = 4 см^2 (КО будет высота параллелограмма МВКД рвоведенная к продосжению стороны ВМ из вершины К )
Имеем равнобедренный треугольник АВС, АВ = ВС. Точка Н - середина АВ. Перпендикуляр к АВ в точке Н - отрезок ДН. Площадь АВС = 144, площадь АНД = 50, угол ВАС = углу ВСА. Основание высоты из вершины В - точка Е.
Так как АН = НВ, НД ⊥ АВ, то треугольник АВД -равнобедренный. Угол ВАД = углу АВД. Отсюда делаем вывод, что треугольники ВДА и АВС подобны по двум углам. Площадь треугольника ВДА = 2*50 = 100. Площади подобных треугольников относятся как квадрат коэффициента "к" подобия. к = √(144/100) = √1,44 = 1,2. Рассмотрим половины подобных треугольников - прямоугольные треугольники ВДН и АВЕ. В треугольнике ВДН примем ВН = х, ДН = у, так как АВ = 2х, то ВД = (2х/1,2). В треугольнике АВЕ катет АЕ = 1,2х, катет ВЕ = 1,2у, гипотенуза АВ = 2х. Из него по Пифагору определяем: ВЕ² = (2х)² - (1,2х)² = 4х² - 1,44х² =2,56х². Тогда ВЕ = 1,2у = 1,6х. Площадь АВЕ = 144/2 = 72. Получаем 72 = (1/2)*АЕ*ВЕ = (1/2)*1,2х*1,6х = 0,96х². х² = 72/0,96 = 75. х = √75 = 5√3.
ответ: боковые стороны равны по 2х = 2*5√3 = 10√3 кв.ед.
(Рисунок во вложении)
ВА = СД ( стороны квадрата), АМ = СК ( по условию), значит ВМ=КД = 4 -1 = 3 см
Если ВМ = КД и ВМ || КД ( ВА || СД ( стороны квадрата), то МВКД – параллелограмм (если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм)
Треугольник МДА – прямоугольный ( угол А = 90 град.)
Найдем МД по теореме Пифагора:
МД^2 = MA^2+ AD^2
MD^2 = 9+ 16 = 25
MD = 5
Прведем прямую через пункт К поралллельно АД, обозначим ее КО
КО= AD= 4 см ( АВСД – квадрат)
Периметр МВКД = (5+1)*2 = 12 см
Площадь МВКД = КО* МВ = 4*1 = 4 см^2 (КО будет высота параллелограмма МВКД рвоведенная к продосжению стороны ВМ из вершины К )
ответ:Периметр МВКД = 12 см
Площадь МВКД = 4 см^2
Так как АН = НВ, НД ⊥ АВ, то треугольник АВД -равнобедренный. Угол ВАД = углу АВД.
Отсюда делаем вывод, что треугольники ВДА и АВС подобны по двум углам.
Площадь треугольника ВДА = 2*50 = 100.
Площади подобных треугольников относятся как квадрат коэффициента "к" подобия.
к = √(144/100) = √1,44 = 1,2.
Рассмотрим половины подобных треугольников - прямоугольные треугольники ВДН и АВЕ.
В треугольнике ВДН примем ВН = х, ДН = у, так как АВ = 2х, то ВД = (2х/1,2).
В треугольнике АВЕ катет АЕ = 1,2х, катет ВЕ = 1,2у, гипотенуза АВ = 2х.
Из него по Пифагору определяем:
ВЕ² = (2х)² - (1,2х)² = 4х² - 1,44х² =2,56х².
Тогда ВЕ = 1,2у = 1,6х.
Площадь АВЕ = 144/2 = 72.
Получаем 72 = (1/2)*АЕ*ВЕ = (1/2)*1,2х*1,6х = 0,96х².
х² = 72/0,96 = 75.
х = √75 = 5√3.
ответ: боковые стороны равны по 2х = 2*5√3 = 10√3 кв.ед.