Дано: АВСД - ромб; Sавсд = 48 см квадратных; О - середина АВ, К - середина ВС, М - середина СД, Н - середина СД. Найти: S окмн - ? Решение: 1) Sавсд = 1/2 * АС * ВД (АС и ВД - диагонали ромба) 48 = 1/2 * АС * ВД, АС * ВД = 48 * 2; АС * ВД = 96; 2) ОК - средняя линия треугольника АВС, КМ - средняя линия треугольника ВСД, НМ - средняя линия треугольника АСД и НО - средняя линия треугольника АВД. Тогда ОНМК - прямоугольник стороны которого равны половинам диагоналей. Тогда S = (1/2)ВД *(1/2) АС= (1/4) * 96 = 96/4 = 24 см квадратных. ответ: 24 см квадратных.
а) В прямоугольной системе координат уравнение сферы радиуса R с центром в точке С(Xo; Yo; Zo) имеет вид:
(x - xo)² + (y - yo)² + (z - zo)² = R².
Значит, надо выделить полные квадраты в заданном уравнении
x² + y² + z² - 4x + 6y = 36.
(x² - 4x + 4) - 4 + (y² + 6y + 9) - 9 + z² = 36.
(x - 2)² +( y + 3)² + z² = 49.
Теперь видны координаты центра сферы: О(2; -3; 0) и величина радиуса R = √49 = 7.
б) Расстояние от центра сферы до заданной плоскости x = −6 равно 2 - (-6) = 8.
Так как радиус равен 7, то сфера не касается такой плоскости.