Для ответа на вопрос, поставленный задачей, достаточно рассмотреть данный во вложении рисунок. К стороне СD пристроен равносторонний треугольник CDE, все углы которого равны 60°, а стороны СЕ=DE=CD.
Точка Е не может находиться на стороне квадрата АВ, так как в таком случае получившийся треугольник равносторонним не будет.
∠АDE= ∠ADC+∠CDE=90°+60°=150° Так как СD- сторона данного в условии квадрата, то АD=DE, и треугольник ADE- равнобедренный с углами при основании АЕ=15 градусов. Так как ∠ СЕD=60°, ∠ АЕС=60°-15°=45°
Каноническое уравнение эллипса: x²/a²+y²/b²=1, 1). 4x²+9y²=36 => x²/9+y²/4=1, где а=3, b=2 - большая и малая полуоси. Фокусное расстояние: F1F2 = 2c, где с=√|a²-b²|. В нашем случае: с=√(9-4) = √5. Координаты фокусов: F1(-√5;0), F2(√5;0).
2). 4x²+25y²=576 => x²/12²+y²/(24/5)²=1, где а=12, b=24/5 - большая и малая полуоси. Фокусное расстояние: F1F2 = 2c, где с=√|a²-b²|. В нашем случае: с=√|144-576/25) = 12√21/5. Координаты фокусов: F1(-12√21/5;0), F2(12√21/5;0).
3) x²+9y²-9 => x²/3²+y²/1²=1, где а=3, b=1 - большая и малая полуоси. Фокусное расстояние: F1F2 = 2c, где с=√|a²-b²|. В нашем случае: с=√(9-1)=2√2. Координаты фокусов: F1(-2√2;0), F2(2√2;0).
4) 9x²+25y²-1 => x²/(1/3)²+y²/(1/5)²=1, где а=1/3, b=1/5 - его большая и малая полуоси. Фокусное расстояние: F1F2 = 2c, где с=√|a²-b²|. В нашем случае: с=√(1/9-1/25)=4/15. Координаты фокусов: F1(-4/15;0), F2(4/15;0).
Для ответа на вопрос, поставленный задачей, достаточно рассмотреть данный во вложении рисунок.
К стороне СD пристроен равносторонний треугольник CDE, все углы которого равны 60°, а стороны СЕ=DE=CD.
Точка Е не может находиться на стороне квадрата АВ, так как в таком случае получившийся треугольник равносторонним не будет.
∠АDE= ∠ADC+∠CDE=90°+60°=150°
Так как СD- сторона данного в условии квадрата, то
АD=DE,
и треугольник ADE- равнобедренный с углами при основании АЕ=15 градусов.
Так как ∠ СЕD=60°,
∠ АЕС=60°-15°=45°
x²/a²+y²/b²=1,
1). 4x²+9y²=36 => x²/9+y²/4=1, где
а=3, b=2 - большая и малая полуоси.
Фокусное расстояние: F1F2 = 2c, где с=√|a²-b²|.
В нашем случае: с=√(9-4) = √5.
Координаты фокусов: F1(-√5;0), F2(√5;0).
2). 4x²+25y²=576 => x²/12²+y²/(24/5)²=1, где
а=12, b=24/5 - большая и малая полуоси.
Фокусное расстояние: F1F2 = 2c, где с=√|a²-b²|.
В нашем случае: с=√|144-576/25) = 12√21/5.
Координаты фокусов: F1(-12√21/5;0), F2(12√21/5;0).
3) x²+9y²-9 => x²/3²+y²/1²=1, где
а=3, b=1 - большая и малая полуоси.
Фокусное расстояние: F1F2 = 2c, где с=√|a²-b²|.
В нашем случае: с=√(9-1)=2√2.
Координаты фокусов: F1(-2√2;0), F2(2√2;0).
4) 9x²+25y²-1 => x²/(1/3)²+y²/(1/5)²=1, где
а=1/3, b=1/5 - его большая и малая полуоси.
Фокусное расстояние: F1F2 = 2c, где с=√|a²-b²|.
В нашем случае: с=√(1/9-1/25)=4/15.
Координаты фокусов: F1(-4/15;0), F2(4/15;0).