Находим sin, cos или tg по основному тригонометрическому тождеству: sin^2a+cos^2a=1 1) cos a =1/3. Найдём sin a по основному тригонометрическому тождеству: sin^2a+cos^2a=1 sin^2a=1-cos^2a=1-(1/3)^2=1-1/9=8/9 sin a=√8/9 (знак корня относится ко всей дроби)=√8/3 (знак корня относится только к числителю)=√4*2/3 (знак корня относится только к числителю, в котором мы разложили число 8 на множители, чтобы извлечь возможные корни, в данном случае можем извлечь корень из 4)=2√2/3 (2√2 - числитель дроби, знак корня относится только к 2). Нашли sin a. Теперь найдём tg a, который равен отношению синуса альфа к косинусу альфа: tg a=sin a/cos a=2√2/3:1/3=2√2/3*3/1 (правило деления двух обыкновенных дробей)=2√2 (тройки сократились при умножении). Таким же образом попробуйте выполнить следующие номера. Надеюсь Если непонятно, пишите в личные сообщения. Удачи.
^2 - квадрат (вторая степень)
sin^2a - синус квадрат альфа
Находим sin, cos или tg по основному тригонометрическому тождеству:
sin^2a+cos^2a=1
1) cos a =1/3. Найдём sin a по основному тригонометрическому тождеству:
sin^2a+cos^2a=1
sin^2a=1-cos^2a=1-(1/3)^2=1-1/9=8/9
sin a=√8/9 (знак корня относится ко всей дроби)=√8/3 (знак корня относится только к числителю)=√4*2/3 (знак корня относится только к числителю, в котором мы разложили число 8 на множители, чтобы извлечь возможные корни, в данном случае можем извлечь корень из 4)=2√2/3 (2√2 - числитель дроби, знак корня относится только к 2).
Нашли sin a. Теперь найдём tg a, который равен отношению синуса альфа к косинусу альфа:
tg a=sin a/cos a=2√2/3:1/3=2√2/3*3/1 (правило деления двух обыкновенных дробей)=2√2 (тройки сократились при умножении).
Таким же образом попробуйте выполнить следующие номера. Надеюсь Если непонятно, пишите в личные сообщения. Удачи.
a(n) -ар пр
d=-12
a(n) = 15
S(n) = 456
n-?
Решение:
a(n) = a(1) + d(n-1)
15 = a(1) -12(n-1) (1)
S(n) = (a(1) +a(n)) * n / 2
456 = (a(1) + 15) * n / 2 (2)
из (1) и (2) составляем систему уравнений:
Система:
15=a-12n+12
912=a*n+15n
Система:
а=3+12n
912=(3+12n) n + 15n
Решаем второе уравнение последней системы:
12n2+18n-912 = 0 | :6
2n2+3n-152 = 0
D=9+8*152=1225>0, 2 корня
n(1)=(-3+35) / 4 = 8
n(2)=(-3-35) / 4 = 9.5∉N
a=3+12*8 = 99
ответ n=8
№2
b(n) геом прг
b(1)=128
q=-1/2
b(4)-?
Решение:
b(4) = b(1) * q^(3)
b(4) = 128*(-1/2)^3 = -128/8== -16
№3
b(n) геом прг
b(1)=270
q=1/3
b(5)-?
Решение:
b(5)=b(1)*q^(4)
b(5)=270*(1/3)^4 = 270*1/81 = 270/81 = 3_1/3