Действительно, угол, который образуется высотой пирамиды и ребром равен 30°, значит, диагональ основания равна 12 мы знаем, что диагональ квадрата = а√2, где а - сторона квадрата значит сторона основания = 12/√2 проведем высоту в боковой грани (т. е. апофему), получится, что высота пирамиды и высота боковой грани и половина стороны основания образуют прямоугольный треугольник. из него найдем апофему (обозначим ее h) 12²=(6√2)²+h² h²=72 h=√72 теперь найдем половину площади боковой грани, для этого h умножим на половину стороны и разделим на 2 (ведь это прямоугольный треугольник):
значит вся грань = 36*2=72 а у нас четыре таких грани, значит, площадь поверхности боковых граней будет равна 4*72=288 Sполное=288+(12√2)²=288+144*2=576 ответ: 576
5. На рисунке прямые CD и EF параллельны сторонам треугольника ABC. Найдите углы треугольника CED, если ∠A = 72°, ∠B = 26°
Рассмотрим ΔABC
∠C = 180 - ∠A - ∠B = 180 - 72 - 26 = 82° (сумма углов треугольника равна 180°)
Рассмотрим четырехугольник AFEC
∠F = 180 - ∠A = 180 - 72 = 108° (односторонние при FD || AC и секущей AB)
∠E = 180 - ∠C = 180 - 82 = 98° (односторонние при FD || AC секущей BC)
∠CED = 180 - ∠FEC = 180 - 98 = 82° (смежные)
Рассмотрим четырехугольник AEDC
FD || AC (по условию)
AF || CD (по условию)
==> четырехугольник AEDC - параллелограмм
∠A = ∠D = 72° (в параллелограмме противоположные углы равны)
Рассмотрим ΔCED: ∠E = 82°, ∠D = 72°, ∠C - ?
∠C = 180 - ∠E - ∠D = 180 - 82 - 72 = 26° (сумма углов треугольника равна 180°)
ответ: ∠E = 82°, ∠D = 72°, ∠C = 26°
6. На рисунке треугольники ABC и DEF - прямоугольные, AB = DF, BC = DE. Докажите, что прямые AB и DF параллельны.
Рассмотрим ΔDEB и ΔBCA - прямоугольные
AB = DF (по условию)
BC = DE (по условию)
==> ΔDEB = ΔBCA по гипотенузе и катету ==> ∠F = ∠A - накрест лежащие для прямых DF и AB и их секущей AF
При параллельных прямых и их секущей накрест лежащие углы равны
==> DF || AB
Ч. т. д.
мы знаем, что диагональ квадрата = а√2, где а - сторона квадрата
значит сторона основания = 12/√2
проведем высоту в боковой грани (т. е. апофему), получится, что высота пирамиды и высота боковой грани и половина стороны основания образуют прямоугольный треугольник. из него найдем апофему (обозначим ее h)
12²=(6√2)²+h²
h²=72
h=√72
теперь найдем половину площади боковой грани, для этого h умножим на половину стороны и разделим на 2 (ведь это прямоугольный треугольник):
значит вся грань = 36*2=72
а у нас четыре таких грани, значит, площадь поверхности боковых граней будет равна 4*72=288
Sполное=288+(12√2)²=288+144*2=576
ответ: 576