Дано: ABCD - параллелограмм АС=32 см AM:MB=1:3 Найти: AF, FC Решение: Проведем BN||MD Тогда MBND тоже является параллелограммом. Значит MB=ND Следовательно AM=CM Угол MAF=ECN (накрест лежащие) Угол AMF=ENC (с соответственно параллельными сторонами). Следовательно, треугольники MAF и ECN равны и AF=EC Угол BAC пересечен параллельными прямыми BN и MD. Стороны угла делятся пропорционально. Значит AF:FC=AM:MB=1:3 Т.е. EF=3AF, FC=EF+EC=EF+AF=4AF AF+FC=AC AF+4AF=AC 5AF=AC AF=0.2AC=0.2*32=6.4 FC=4*6.4=25.6 ответ: 6,4 см, 25,6 см
1.Боковая сторона разделена на 4 равные части.Через точки деления проведены прямые,параллельные основаниям. Получается, что провели три отрезка, обозначим их m1, m2, m3 Средняя линия трапеции делит её на 2 маленькие трапеции.
2. Основания трапеции равны 20 см и 50 см.
Средняя линия трапеции равна полусумме оснований m= (a+b)/2 =
АС=32 см
AM:MB=1:3
Найти: AF, FC
Решение:
Проведем BN||MD
Тогда MBND тоже является параллелограммом. Значит
MB=ND
Следовательно
AM=CM
Угол MAF=ECN (накрест лежащие)
Угол AMF=ENC (с соответственно параллельными сторонами).
Следовательно, треугольники MAF и ECN равны и AF=EC
Угол BAC пересечен параллельными прямыми BN и MD. Стороны угла делятся пропорционально. Значит
AF:FC=AM:MB=1:3
Т.е. EF=3AF,
FC=EF+EC=EF+AF=4AF
AF+FC=AC
AF+4AF=AC
5AF=AC
AF=0.2AC=0.2*32=6.4
FC=4*6.4=25.6
ответ: 6,4 см, 25,6 см
42, 5 см, 35 см, 27,5 cм
Объяснение:
1.Боковая сторона разделена на 4 равные части.Через точки деления проведены прямые,параллельные основаниям. Получается, что провели три отрезка, обозначим их m1, m2, m3 Средняя линия трапеции делит её на 2 маленькие трапеции.
2. Основания трапеции равны 20 см и 50 см.
Средняя линия трапеции равна полусумме оснований m= (a+b)/2 =
= (20+50)/2= 35 (см) = это отрезок m2
3. Рассмотрим трапецию, с основаниями 50 см и m2
Найдём её среднюю линию m1= (50+35)/2 = 42, 5 см
4.Рассмотрим трапецию, с основаниями 20 см и m2
Найдём её среднюю линию m3 = (20+ 35)/2= 27,5 cм