Прямые ab , ac, ad попарно взаимно перпендикулярны . найдите длину отрезка cd если 1) ad=3 см, bc=7 см, ad=1,5 см 2) bd=9 см, bc=16 см, ad=5 см 3) ab=b см, bc= a см, ad=d см 4) bd=c см, bc= a см, ad=d см
Берем отрезок любой длины. Из его концов, как из центров проводим две окружности радиусо равным длине отрезка. Их точка пересечения вместе с концами отрезка образует равносторонний треугольник. Из вершины этого треугольника опускаем перпендикуляр на противоположную сторону (стандартное построение). А можно просто соединить эту вершину со второй точкой пересечения окружностей- это и будет перпендикуляр.. Легко понять, что этот перпендикуляр-высота, медиана и биссектриса угла равностороннего треугольника и значит образует со стороной угол в 30 градусов. Смежный с не й угол равен 150 градусам.
1. В прямоугольный треугольник вписана окружность (см. рис 1). Проведем радиусы AN и AM к катетам HP и HT соответственно. Как видно из рисунка, образовался квадрат HNAM, для которого отрезок AH является диагональю. Диагональ квадрата найдем по формуле: , где d = AH - диагональ квадрата, a - сторона квадрата, которая нам известна (7м).
ответ: . 2. В окружность вписан равнобедренный треугольник с тупым углом (см рис. 2). Для нахождения радиуса описанной окружности воспользуемся формулой: , где a, b и c - стороны треугольника, а S - площадь треугольника. Найдем площадь треугольника: ; Найдем сторону треугольника AC из ΔHCA (∠H = 90°):
AC = BC, т. к. треугольник равнобедренный. Найдем радиус окружности:
Диагональ квадрата найдем по формуле:
, где d = AH - диагональ квадрата, a - сторона квадрата, которая нам известна (7м).
ответ: .
2. В окружность вписан равнобедренный треугольник с тупым углом (см рис. 2). Для нахождения радиуса описанной окружности воспользуемся формулой:
, где a, b и c - стороны треугольника, а S - площадь треугольника.
Найдем площадь треугольника:
;
Найдем сторону треугольника AC из ΔHCA (∠H = 90°):
AC = BC, т. к. треугольник равнобедренный.
Найдем радиус окружности:
ответ: м.