Дано: ав и сд диаметры окружности Доказать что асIIвд
Рассмотрим ΔАОС и ΔВОД: Они равны по двум сторонам и углу между ними т.к. ав диагональ значит ао=ов как радиус окружности сд диагональ, значит со=од как радиус окружности угол аос=углу вод как накрест лежащие углы
Из равенства треугольников следует равенство углов ∠асо=∠одв и ∠сао=∠дво
Рассмотрим отрезки ас и вд и секущую ав: углы при отрезках и секущей называются накрест лежащими углами и они равны из равенства треугольников по теореме о параллельности прямых: Если накрест лежащие углы равны, то прямые параллельны.
а) Точка пересечения прямых находится совместным решением уравнений прямых: y=3x-1 и x-3y+1=0Выразим их в виде системы: 3х - у = 1 3х - у = 1 х - 3у = -1 -3х + 9у = 3 8у = 4 у = 4/8 = 0,5 х = -1 + у = -1 + 3*0,5 = -1 + 1,5 = 0,5 Точка пересечения (0,5; 0,5).
б) Угол между прямыми : две неперпендикулярные прямые A1, A2 (взятые в данном порядке) представляются уравнениями y=a1x+b1, y=a2x+b2. Тогда формула для определения угла между ними: . У первой прямой коэффициент а1 = 3 Для второго надо уравнение выразить относительно у:
. а2 = 1/3. Тангенс угла равен: . Данному тангенсу соответствует угол -53.1301 градуса. Знак минус означает, что вторая линия имеет меньший угол наклона к оси х. В этом можно убедиться по коэффициентам а в уравнении прямой у = ах + в. Коэффициент а равен тангенсу угла наклона прямой к оси х. а1 = 3. α1 = arc tg 3 = 71.56505 градус. a2 = 1/3 α2 = arc tg(1/3) = 18.43495 градус. Если отнять 18.43495 - 71.56505 = -53.1301 градус.
Доказать что асIIвд
Рассмотрим ΔАОС и ΔВОД:
Они равны по двум сторонам и углу между ними т.к.
ав диагональ значит ао=ов как радиус окружности
сд диагональ, значит со=од как радиус окружности
угол аос=углу вод как накрест лежащие углы
Из равенства треугольников следует равенство углов
∠асо=∠одв и ∠сао=∠дво
Рассмотрим отрезки ас и вд и секущую ав:
углы при отрезках и секущей называются накрест лежащими углами и они равны из равенства треугольников
по теореме о параллельности прямых: Если накрест лежащие углы равны, то прямые параллельны.
y=3x-1 и x-3y+1=0Выразим их в виде системы:
3х - у = 1 3х - у = 1
х - 3у = -1 -3х + 9у = 3
8у = 4
у = 4/8 = 0,5
х = -1 + у = -1 + 3*0,5 = -1 + 1,5 = 0,5
Точка пересечения (0,5; 0,5).
б) Угол между прямыми :
две неперпендикулярные прямые A1, A2 (взятые в данном порядке) представляются уравнениями
y=a1x+b1,
y=a2x+b2.
Тогда формула для определения угла между ними:
.
У первой прямой коэффициент а1 = 3
Для второго надо уравнение выразить относительно у:
.
а2 = 1/3.
Тангенс угла равен:
.
Данному тангенсу соответствует угол -53.1301 градуса.
Знак минус означает, что вторая линия имеет меньший угол наклона к оси х.
В этом можно убедиться по коэффициентам а в уравнении прямой у = ах + в.
Коэффициент а равен тангенсу угла наклона прямой к оси х.
а1 = 3. α1 = arc tg 3 = 71.56505 градус.
a2 = 1/3 α2 = arc tg(1/3) = 18.43495 градус.
Если отнять 18.43495 - 71.56505 = -53.1301 градус.