В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
alial1
alial1
25.10.2020 12:40 •  Геометрия

Пусть A (2;3), B (-1;2) . Найдите координаты точки, которая делит отрезок АБ в отношении:​

Показать ответ
Ответ:
Эммикэт
Эммикэт
24.05.2021 02:21

Окружность, центр которой расположен в первой координатной четверти, касается оси Ox в точке M, пересекает две гиперболы y = \frac{k1}{x} и y = \frac{k2}{x} (k1, k2 > 0) в точках A и B таких, что прямая AB проходит через начало координат O. Известно, что k1 * k2 = 144. Найдите наименьшую возможную длину отрезка OM.В ответ запишите квадрат длины ОМ.

Объяснение:

Прямая АВ , проходящая через начало координат имеет вид у=кх

Найдем точки пересечения этой прямой и гипербол:

y = \frac{k1}{x} и у=кх →   \frac{k1}{x} = кх , х²= \frac{k1}{k}  ;  x = \sqrt{\frac{k1}{k} }  (   т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* \sqrt{\frac{k1}{k} }  .

y = \frac{k2}{x} и у=кх →    \frac{k2}{x} = кх , х²= \frac{k2}{k}  ;  x = \sqrt{\frac{k2}{k} }  (   т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* \sqrt{\frac{k2}{k} }  .

По свойство касательной и секущей проведенных из одной точки ОМ²=ОА*ОВ.   Найдем ОА и ОВ по формулам расстояния между точками : ОА= \sqrt{\frac{k1}{k} +k^{2}*\frac{k1}{k} } = \sqrt{\frac{k1}{k} +k*k1} ,

ОB= \sqrt{\frac{k2}{k} +k^{2}*\frac{k2}{k} } = \sqrt{\frac{k2}{k} +k*k2}  .

Тогда ОМ²= \sqrt{\frac{k1}{k} +k*k1} *  \sqrt{\frac{k2}{k} +k*k2}   =  \sqrt{k1*(\frac{1}{k}+k) } *\sqrt{k2*(\frac{1}{k}+k) } =( \frac{1}{k}+k) *\sqrt{k1*k2}  .  Т.к   \frac{1}{k}+k ≥2  ,по следствию из неравенства о среднем арифметическом и среднем геометрическом , то принимает наименьшее значение равное  2 , а к1*к2=144,    то ОМ²=2*√144=2*12=24.

===========================================

Свойство касательной и секущей проведенных из одной точки : "Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью."

Формула расстояния между точками  d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.


с задачей по геометрии! Она лёгкая, но я запуталась
0,0(0 оценок)
Ответ:
WhiteAlex
WhiteAlex
05.01.2020 18:02
Пусть A∈ (O , R)  и   B ∈ (O₁ , R)  * * *  А и  В  лежат соответственно на окружностях верхнего и нижнего оснований  * * * 
Через точку  B проведем  BC ||  OO₁ ( точка  C  это проекция точки B на верхнего основания ) .   Ясно ,  что  OO₁ | |  пл. ACB .
Расстояние  от  любой точки (например точки O )  прямой OO₁ до 
до плоскости  ACB будет искомое  .
Проведем  OM ⊥ AC ⇒ OM   ⊥ пл. ACB ;   MA=MC =AC/2
AC²= AB² -BC² =(√113)² -9² ) =113 - 81  =32 . * * * AC = √32 = 4√2 * * *

d = OM =√(R² - MA²) =√(R² - (AC/2)²)  = √(R² - AC²/4)  = √(6² - 32/4) =  2√7 .
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота