Треугольник самая распространенная фигура. В лесу, когда мы смотрим на ель и ее тень, то перед нами представляется равнобедренный треугольник.
На магических символах.
Предметы обихода: треуголки, вырезы на одежде.
Музыкальные инструменты.
ТРЕУГОЛЬНИК, самозвучащий музыкальный инструмент — стальной прут, согнутый в виде треугольника, по которому ударяют палочкой. Применяется в оркестрах и инструментальных ансамблях.
“Египетский” треугольник
Среди бесконечного количества возможных прямоугольных треугольников, особый интерес всегда вызывали так называемые «пифагоровы треугольники», стороны которых являются целыми числами. Несомненно, «пифагоровы треугольники» также относятся к разряду «сокровищ геометрии», а поиски таких треугольников представляют одну из из интереснейших страниц в истории математики. Наиболее широко известным из них является прямоугольный треугольник со сторонами 4, 3 и 5. Он назывался также «священным» или «египетским», так как он широко использовался в египетской культуре
Треугольник самая распространенная фигура. В лесу, когда мы смотрим на ель и ее тень, то перед нами представляется равнобедренный треугольник.
На магических символах.
Предметы обихода: треуголки, вырезы на одежде.
Музыкальные инструменты.
ТРЕУГОЛЬНИК, самозвучащий музыкальный инструмент — стальной прут, согнутый в виде треугольника, по которому ударяют палочкой. Применяется в оркестрах и инструментальных ансамблях.
“Египетский” треугольник
Среди бесконечного количества возможных прямоугольных треугольников, особый интерес всегда вызывали так называемые «пифагоровы треугольники», стороны которых являются целыми числами. Несомненно, «пифагоровы треугольники» также относятся к разряду «сокровищ геометрии», а поиски таких треугольников представляют одну из из интереснейших страниц в истории математики. Наиболее широко известным из них является прямоугольный треугольник со сторонами 4, 3 и 5. Он назывался также «священным» или «египетским», так как он широко использовался в египетской культуре
= 180 - 68 - 68 = 44°
Объяснение:
Биссектриса делит угол пополам.
Если угол между биссектрисой и основанием 34°, то угол при основании = 34*2 = 68°
Углы при основании равнобедренного треугольника равны, второй угол при основании тоже = 68°
Сумма углов треугольника = 180°, значит угол при вершине = 180 - 68 - 68 = 44°
Медиана в равнобедренном треугольнике, опущенная к основанию, также является и биссектрисой,
поэтому угол между медианой, проведенной к основанию, и боковой стороной будет угол = 44/2 = 22°