X,y - основания трапеции a - боковая сторона h - высота, h=4/5a 2a+x+y=64- периметр трапеции Рассм. треугольник, образованный высотой трапеции h, боковой стороной a: основание треугольника - (y-x)/2, тк по условию задачи, y-x=18, то основание треугольника равно 9. по теореме пифагора, 81=a*a+h*h 81=a*a+16/25a*a, отсюда получаем, что а=15. h=4/5*15=12 Из уравнения 2a+x+y=64 и y-x=18, находим, что основания трапеции х и у равны 8 и 26 соотвественно. Площадь трапеции равна полусумме оснований на высоту, т.е. 0,5*12*(8+26)=204
a - боковая сторона
h - высота, h=4/5a
2a+x+y=64- периметр трапеции
Рассм. треугольник, образованный высотой трапеции h, боковой стороной a:
основание треугольника - (y-x)/2, тк по условию задачи, y-x=18, то основание треугольника равно 9.
по теореме пифагора, 81=a*a+h*h
81=a*a+16/25a*a, отсюда получаем, что а=15. h=4/5*15=12
Из уравнения 2a+x+y=64 и y-x=18, находим, что основания трапеции х и у равны 8 и 26 соотвественно.
Площадь трапеции равна полусумме оснований на высоту, т.е. 0,5*12*(8+26)=204
Дано: а и b параллельные прямые, и прямая а пересекает плоскость α.
Обозначим точку пересечения а и плоскости буквой А.
Известно, что через две параллельные прямые можно провести плоскость, притом только одну. Пусть это будет плоскость β.
Прямая а лежит в плоскости β, точка А принадлежит прямой а, значит, А тоже принадлежит плоскости β. Точка А лежит в плоскости α и в плоскости β.
Если две плоскости имеют общую точку, то они имеют общую прямую, которая является линией пересечения этих плоскостей ( аксиома).
Обозначим общую прямую плоскостей α и β буквой m. Прямые a, b и m находятся в плоскости β
Если на плоскости одна из параллельных прямых пересекает какую либо прямую, то вторая прямая тоже пересекает эту прямую.
Точку пересечения прямых b и m обозначим B
Так как точка B находится на прямой m,то точка B находится в плоскости α и является единственной общей точкой прямой b и плоскости α.
.Следовательно, прямая b пересекает плоскость α.