Пусть в треугольнике ABC биссектрисы AD и CE пересекаются в точке O, при этом угол AOC прямой. Сумма углов любого треугольника равна 180 градусам, тогда сумма углов OCA и OAC треугольника AOC равна 90 градусам. Пусть OCA=a, OAC=b, a+b=90. По свойству биссектрисы, угол OCA равен половине угла ACB, тогда ACB=2a. Аналогично, угол OAC равен половине угла BAC, тогда BAC=2b. Следовательно, ACB+BAC=2a+2b=180, то есть, сумма двух углов треугольника ABC равна 180 градусам. Этого быть не может, то есть, мы получили противоречие. Значит, биссектрисы двух углов пересекаться под прямым углом не могут.
Смотрим определение синуса в учебнике геометрии. "Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе".
Дает ли это определение понимание синуса? Нет, не дает. Определение не полное. Потому что оно рассматривает только частный случай треугольника - прямоугольный треугольник.
Смотрим определение синуса в учебнике алгебры. "Ордината точки Р, полученной при повороте точки Р (1;0) вокруг начала координат на угол а-радиан, называется синусом числа а, а абсцисса этой точки - косинусом".
Это определение вообще из области математической абстракции, так как вводит отрицательные значения синуса и косинуса. И с пониманием синуса по этому определению ещё больше сложностей.
Есть простой тест на понимание синуса и косинуса. Попросите школьника нарисовать линию косинуса для произвольного треугольника (не прямоугольного). Если он этого сделать не может - он не понимает, что такое синус и косинус.
Визуализация синуса
Запоминание через понимание
Смотрим определение синуса в учебнике геометрии. "Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе".
Дает ли это определение понимание синуса? Нет, не дает. Определение не полное. Потому что оно рассматривает только частный случай треугольника - прямоугольный треугольник.
Смотрим определение синуса в учебнике алгебры. "Ордината точки Р, полученной при повороте точки Р (1;0) вокруг начала координат на угол а-радиан, называется синусом числа а, а абсцисса этой точки - косинусом".
Это определение вообще из области математической абстракции, так как вводит отрицательные значения синуса и косинуса. И с пониманием синуса по этому определению ещё больше сложностей.
Есть простой тест на понимание синуса и косинуса. Попросите школьника нарисовать линию косинуса для произвольного треугольника (не прямоугольного). Если он этого сделать не может - он не понимает, что такое синус и косинус.
Объяснение: