Обозначим каждую часть диагонали х Вся диагональ 3х Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х² Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна 1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора равна√(3х)²-а² Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение 9х^4=a^4 3x²=a² x=a√3/3 диагональ равна а·√3 вторая сторона по теореме ПИфагора а√2
Рассмотрим два треугольника ABC и A1B1C1.Пусть в этих треугольниках равны стороны AB и A1B1,BC и B1C1,а угол ABC равен углу A1B1C1.Тогда треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы угол A1B1C1 совпал с углом ABC.При этом можно расположить треугольник A1B1C1 так, чтобы сторона А1В1 совпала со стороной АВ, а сторона B1С1 - со стороной BС. (В случае необходимости вместо треугольника A1B1C1 можно рассматривать равный ему "перевернутый" треугольник, т. е. треугольник, симметричный A1B1C1 относительно произвольной прямой .)Тогда треугольники совпадут полностью, поскольку совпадут все их вершины. t
Вся диагональ 3х
Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х²
Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна
1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора
равна√(3х)²-а²
Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение
9х^4=a^4
3x²=a²
x=a√3/3
диагональ равна а·√3
вторая сторона по теореме ПИфагора а√2