1. 10 см.
2. BD=AC=10 см.
Объяснение:
Р ABC=AB+BC+AC;
AB=AD+BD; BC=CL+BL; AC=AK+CK;
P AKD=AK+KD+AD;
P BDL=BD+BL+DL;
Замечаем, что KD=CL и DL=KC;
В Р AKD заменим KD на CL;
В P BDL заменяем DL на KC.
Получаем Р AKD + P BDL=AK+CL+AD + DB+BL+KC=10;
AD+DB=AC; CL+BL=BC; FR+CK=AC.
И в итоге Р ABC=10 см.
***
2. Пусть меньший угол равен х. Тогда больший равен 2х.
Знаем, что угол А=90*.
х+2х=90*;
3х=90*;
х=30* - меньший угол;
Больший угол равен 2х=2*30=60*.
DA/AC=Sin30*;
AC=DA/Sin30*=5/(1/2)=5*2=10 см.
Так как у прямоугольника диагонали равны, то BD=AC=10 см.
Відповідь:
182.79644736
Пояснення:
Знайдемо сторону квадрата а, вписаного в круг
а=R√2
Тоді, площа меншого сегмента обрахофується за формулою
S=R^2×arcsin(a/(2R))-a/4×√(4R^2-a^2)
S=64arcsin(8√2/16)-8√2/4×√(4×64-2×64)=64arcsin(√2/2)-2√2×8√2=64×pi/4-32=16pi-32 =18.265482457
Площе сегмента можна вирахувати як площу сектора- площу трикутника, яка дорівнює четвертій частині площі квадрата
Площа сектора, так як кут між діагоналями квадрата дорівнює 90°=рі/2, дорівнює
S=pi/2×R^2/2-a^2/4=16pi-32
Знайдемо площу кола
S○=pi×R^2=pi×64=201.06192982
Тоді більший сектор буде різницею площі кола й меншого сектора
S◐=S○-S=201.06192982-18.265482457 =182.79644736=58pi
1. 10 см.
2. BD=AC=10 см.
Объяснение:
Р ABC=AB+BC+AC;
AB=AD+BD; BC=CL+BL; AC=AK+CK;
P AKD=AK+KD+AD;
P BDL=BD+BL+DL;
Замечаем, что KD=CL и DL=KC;
В Р AKD заменим KD на CL;
В P BDL заменяем DL на KC.
Получаем Р AKD + P BDL=AK+CL+AD + DB+BL+KC=10;
AD+DB=AC; CL+BL=BC; FR+CK=AC.
И в итоге Р ABC=10 см.
***
2. Пусть меньший угол равен х. Тогда больший равен 2х.
Знаем, что угол А=90*.
х+2х=90*;
3х=90*;
х=30* - меньший угол;
Больший угол равен 2х=2*30=60*.
DA/AC=Sin30*;
AC=DA/Sin30*=5/(1/2)=5*2=10 см.
Так как у прямоугольника диагонали равны, то BD=AC=10 см.
Відповідь:
182.79644736
Пояснення:
Знайдемо сторону квадрата а, вписаного в круг
а=R√2
Тоді, площа меншого сегмента обрахофується за формулою
S=R^2×arcsin(a/(2R))-a/4×√(4R^2-a^2)
S=64arcsin(8√2/16)-8√2/4×√(4×64-2×64)=64arcsin(√2/2)-2√2×8√2=64×pi/4-32=16pi-32 =18.265482457
Площе сегмента можна вирахувати як площу сектора- площу трикутника, яка дорівнює четвертій частині площі квадрата
Площа сектора, так як кут між діагоналями квадрата дорівнює 90°=рі/2, дорівнює
S=pi/2×R^2/2-a^2/4=16pi-32
Знайдемо площу кола
S○=pi×R^2=pi×64=201.06192982
Тоді більший сектор буде різницею площі кола й меншого сектора
S◐=S○-S=201.06192982-18.265482457 =182.79644736=58pi