Большее основание - а, меньшее обозначим b, а стороны трапеции c (т.к. равнобедренная).
Окружность может быть вписана в трапецию тогда и только тогда, когда сумма ее оснований равна сумме боковых сторон. отсюда: b+a=c+c b=2c-a.
Теперь проведем перпендикуляры к основанию а. Нетрудно увидеть, что мы получим два равных прямоугольных треугольника, в которых меньшие углы равны 30%. В прямоугольном треугольнике напротив угла в 30% лежит катет, равный половине гипотенузы, т.е. равный c/2. a-(c/2+c/2) = b.
А я бы по другому решила.
Большее основание - а, меньшее обозначим b, а стороны трапеции c (т.к. равнобедренная).
Окружность может быть вписана в трапецию тогда и только тогда, когда сумма ее оснований равна сумме боковых сторон. отсюда: b+a=c+c
b=2c-a.
Теперь проведем перпендикуляры к основанию а. Нетрудно увидеть, что мы получим два равных прямоугольных треугольника, в которых меньшие углы равны 30%. В прямоугольном треугольнике напротив угла в 30% лежит катет, равный половине гипотенузы, т.е. равный c/2. a-(c/2+c/2) = b.
Составим систему:
b = 2c-a
b = a-c
Из нее найдем с=2а/3, и b=a/3
Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral