Радиус круга равен 9 см по одну сторону от центра круга проведены две параллельные хорды равны соответственно сторонам правильного треугольника и квадрата вписанных в этот круг найдите площадь части круга находящихся между хордами
Здесь два случая.1.Треугольник расположен над центром окружности(в этом случае его высота будет меньше радиуса окружности).2.Треугольник расположен под центром окружности(в этом случае его высота будет больше радиуса окружности).Итак,треугольник ABC,центр окружности-точка О,BH-высота.1 случай.Найдем HO из треугольника ОСН по теореме Пифагора.Получаем,что ОН=3.ВО=5,значит ВН=5-3=2.Найдем площадь треугольника.S=1/2*8*2=8Боковая сторона:ВС^2=16+4=20.ВС=2 корня из 5.2 случай.ОН как мы уже нашли,равняется 3.Тогда ВН=5+3=8.S=1/2*8*8=32BC^2=64+16=80.ВС=4 корня из 5
Поскольку центр окружности О расположен в середине стороны АВ, то касательные ВС и АД перпендикулярны АВ и, соответственно, параллельны друг другу. Таким образом, получается, что данный четырёхугольник - трапеция с основаниями АД и ВС.
Опустим из вершины Д на ВС перпендикуляр ДК, а из центра окружности перпендикуляр ОМ на СД и среднюю линию трапеции ОР.ВК =АД, а
ВС = ВК +КС = 5+КС.
Тр-ки ДКС и ОМР подобны, т.к. они прямоугольные и углы КДС и РОМ равны как острые углы с взаимно перпендикулярными сторонами. Соответствующие стороны этих тр-ков пропорциональны: СД:ОР = ДК:ОР = КС: МР
Но ДК = АВ = 2√35, а ОМ = R=0,5АВ = √35.
Из отношения СД:ОР = ДК:ОР
получим СД:ОР = 2√35 : √35 = 2
Т.е. коэффициент пропорциональности равен 2, то СД = 2 ОР и МР = 0,5КС
Сторона СД точкой Р делится пополам, т.к. ОР - средняя линия трапеции.
Тогда СР = ОР.
Средняя линия трапеции равна полусумме оснований: ОР = 0,5 (АД + ВС) =
= 0,5 (5+ 5 +КС) = 5 + 0,5КС
В тр-ке ОРМ: ОР² = ОМ² + МР²
Поскольку МР = 0,5КС и ОМ = R = 0,5АВ = √35, то по теореме Пифагора
Поскольку центр окружности О расположен в середине стороны АВ, то касательные ВС и АД перпендикулярны АВ и, соответственно, параллельны друг другу. Таким образом, получается, что данный четырёхугольник - трапеция с основаниями АД и ВС.
Опустим из вершины Д на ВС перпендикуляр ДК, а из центра окружности перпендикуляр ОМ на СД и среднюю линию трапеции ОР.ВК =АД, а
ВС = ВК +КС = 5+КС.
Тр-ки ДКС и ОМР подобны, т.к. они прямоугольные и углы КДС и РОМ равны как острые углы с взаимно перпендикулярными сторонами. Соответствующие стороны этих тр-ков пропорциональны: СД:ОР = ДК:ОР = КС: МР
Но ДК = АВ = 2√35, а ОМ = R=0,5АВ = √35.
Из отношения СД:ОР = ДК:ОР
получим СД:ОР = 2√35 : √35 = 2
Т.е. коэффициент пропорциональности равен 2, то СД = 2 ОР и МР = 0,5КС
Сторона СД точкой Р делится пополам, т.к. ОР - средняя линия трапеции.
Тогда СР = ОР.
Средняя линия трапеции равна полусумме оснований: ОР = 0,5 (АД + ВС) =
= 0,5 (5+ 5 +КС) = 5 + 0,5КС
В тр-ке ОРМ: ОР² = ОМ² + МР²
Поскольку МР = 0,5КС и ОМ = R = 0,5АВ = √35, то по теореме Пифагора
(5 + 0,5КС)² = (√35)² + (0,5КС)²
25 +2·0,5·5·КС +0,25КС² = 35 + 0,25КС²
5КС = 35-25 = 10
КС = 2
Тогда ВС = ВК +КС = 5+ 2 = 7