Радиус окружности описанной около правильного многоугольника равен 6√3, а сторона многоугольника равна 10. найти радиус окружности вписанной в многоугольник и количество сторон многоугольника
Пирамида правильная, значит треугольник АВС - правильный (равносторонний), а вершина S проецируется в центр О треугольника АВС. AS - боковое ребро =13. SH - апофема = 10. АН - половина стороны (так как в правильной пирамиде боковые грани - равнобедренные треугольники), по Пифагору равна √(AS²-SH²) или АН=√(169-100)=√69. АВ=2√69. АВС - правильный треугольник, в котором СН - высота, медиана и биссектриса. СН=(√3/2)*АВ (формула). СН=(√3/2)*2√69=3√23. НО=(1/3)*СН (свойство медианы) или НО=√23. Из прямоугольного треугольника SOH по Пифагору: SO=√(SH²-HO²) или SO=√(100-23) =√77. ответ: SO=√77.
Рассмотрим основание-ромб. ∠ADC=2∠BAD .Сумма углов в ромбе равна 360°, и противоположные углы равны. Выразим сумму углов ромба через ∠BAD.
2∠ADC+2∠BAD=2·2∠BAD+2∠BAD=6∠DAD -сумма углов в ромбе. Вычислим ∠BAD:
6∠BAD=360°
∠BAD=360°:6=60°.
∠DAC=2·60°=120°.
BD- диагональ ромба и лежит против угла в 60°. эта же диагональ делит угол 120° пополам (свойство диагоналей ромба), следовательно ΔABD- равносторонний.
BD=4 cm (по условию), AD=AB=BD=4 cm.
Построим сечение перпендикулярное к ребру AA₁. Продлим ребро CC₁ вниз..
Из точек B и D опустим перпендикуляры на ребра AA₁ и CC₁.На ребре АА₁ пересекутся в точке, назовем ее F, на ребре СС₁ пересекутся в точке, назовем ее K.
Получили сечение DFBK, перпендикулярное к боковым ребрам.
∠FAD=∠FAB=45°, AD=AB, ∠AFD=∠AFB=90°, ⇒ΔAFD=ΔAFB и точка F -общая точка.)
Рассмотрим ΔAFD. ∠AFD=90°,∠FAD=45°,⇒∠ADF=45°, треугольник равнобедреный и AF=FD. AD=4cm,
AD²=AF²+FD², AD²=2FD², 4²=2FD², FD²=16/2=8, FD=√8=2√2 cm
AS - боковое ребро =13.
SH - апофема = 10.
АН - половина стороны (так как в правильной пирамиде боковые грани - равнобедренные треугольники), по Пифагору равна √(AS²-SH²) или
АН=√(169-100)=√69.
АВ=2√69.
АВС - правильный треугольник, в котором СН - высота, медиана и биссектриса. СН=(√3/2)*АВ (формула).
СН=(√3/2)*2√69=3√23.
НО=(1/3)*СН (свойство медианы) или
НО=√23.
Из прямоугольного треугольника SOH по Пифагору:
SO=√(SH²-HO²) или SO=√(100-23) =√77.
ответ: SO=√77.
Объем наклонного параллелепипеда можновычислить по формуле
V=Sосн.·H(высота параллелепипеда)
V=Sсеч.перпендикулярного боковому ребру·Lдлина бокового ребра.
Решаем по второй формуле.
Рассмотрим основание-ромб. ∠ADC=2∠BAD .Сумма углов в ромбе равна 360°, и противоположные углы равны. Выразим сумму углов ромба через ∠BAD.
2∠ADC+2∠BAD=2·2∠BAD+2∠BAD=6∠DAD -сумма углов в ромбе. Вычислим ∠BAD:
6∠BAD=360°
∠BAD=360°:6=60°.
∠DAC=2·60°=120°.
BD- диагональ ромба и лежит против угла в 60°. эта же диагональ делит угол 120° пополам (свойство диагоналей ромба), следовательно ΔABD- равносторонний.
BD=4 cm (по условию), AD=AB=BD=4 cm.
Построим сечение перпендикулярное к ребру AA₁. Продлим ребро CC₁ вниз..
Из точек B и D опустим перпендикуляры на ребра AA₁ и CC₁.На ребре АА₁ пересекутся в точке, назовем ее F, на ребре СС₁ пересекутся в точке, назовем ее K.
Получили сечение DFBK, перпендикулярное к боковым ребрам.
∠FAD=∠FAB=45°, AD=AB, ∠AFD=∠AFB=90°, ⇒ΔAFD=ΔAFB и точка F -общая точка.)
Рассмотрим ΔAFD. ∠AFD=90°,∠FAD=45°,⇒∠ADF=45°, треугольник равнобедреный и AF=FD. AD=4cm,
AD²=AF²+FD², AD²=2FD², 4²=2FD², FD²=16/2=8, FD=√8=2√2 cm
ΔAFD=ΔAFB=ΔDKB=ΔBKC=ΔDKC⇒FB=FD=KC=KD, pyfxbn d ct
Подробнее - на -