Радиус окружности равен 4 см. На продолжении радиуса взята точка Е, отстоящая от центра О окружности на расстояние 8 см. Через точку Е проведен луч, пересекающий окружность в точках В и С (рис. 19.6), ВЕ = 10. Найдите СЕ.
Боковые стороны в р/б равны , обозначим их за Х. х+х+96=196 2х=196-96 2х=100 х=100/2 х=50 теперь проведем высоту к основанию, она же будет медианой(делить основание пополам) , у нас должно получится 2 равных прямоугольных треугольника, рассмотрим один из них: боковая сторона р/б будет гипотенузой, а один из катетов равен половине основания р/б(катет1): катет1=96/2 катет1=48 найдем высоту р/б(или катет2) по т.пифагора: гипотенуза^2=катет1^2+катет2^2 катет2=корень из(гипотенуза^2-катет1^2) катет2=корень из(50^2-48^2) катет2=14 площадь=высота*основание/2 площадь=14*96/2 площадь=672
х+х+96=196
2х=196-96
2х=100
х=100/2
х=50
теперь проведем высоту к основанию, она же будет медианой(делить основание пополам) , у нас должно получится 2 равных прямоугольных треугольника, рассмотрим один из них:
боковая сторона р/б будет гипотенузой, а один из катетов равен половине основания р/б(катет1):
катет1=96/2
катет1=48
найдем высоту р/б(или катет2) по т.пифагора:
гипотенуза^2=катет1^2+катет2^2
катет2=корень из(гипотенуза^2-катет1^2)
катет2=корень из(50^2-48^2)
катет2=14
площадь=высота*основание/2
площадь=14*96/2
площадь=672
Боковая сторона равнобедренного треугольника равна 10 см, а его основание 12 см. Найдите его площадь.
Биссектриса угла А параллелограмма ABCD делит сторону ВС на отрезки ВК и КС, равные соответственно 8 см и 4 см. Найдите периметр параллелограмма.
В трапеции ABCD углы А и В прямые. Диагональ АС — биссектриса угла А и равна 6 см. Найдите площадь трапеции, если угол CDA равен 60°.
В окружности проведены две хорды АВ и CD, пересекающиеся в точке К, КС = 6 см, АК = 8 см, ВК + DK = 16 см. Найдите длины ВК и DK.
Квадрат со стороной 8 см описан около окружности. Найдите площадь прямоугольного треугольника с острым углом 30°, вписанного в данную окружность.