Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
S = 30*40/2 = 600см².
Треугольник АВС. Угол А : углу В : углу С = 1:3:5
х+3х+5х=180
9х=180
х=20
Угол А = 20 град
Угол В = 20*3=60 град
Угол С = 20*5=100 град
Р, М, К - точки касания окружности сторон треугольника соответственно на сторонах АВ, ВС и АС
О - центр окружности
Рассмотрим четырёхугольник АКОР. УголК + угол Р =90+90=180 град (радиусы, проведённые в точки касания), значит
угол КОР + уголА = 360-180=180 град
угол КОР = 180-20=160 град.
Аналогично рассуждаем при нахождении углов РОМ и МОК
угол РОМ = 180-60=120 град
угол МОК = 180-100=80 град