В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kofer
kofer
08.09.2022 17:26 •  Геометрия

Радиус окружности, вписанной в ромб равен r, острый угол ромба равен 2x.найти площадь ромба, если r=6см, sinx=3/5

Показать ответ
Ответ:
romamuver
romamuver
24.05.2020 16:26

Очень простая задача, которую можно решить я её решаю только из за "египетского" треугольника.

Если в ромбе провести диагонали, то получится четыре одинаковых прямоугольных треугольника, в которых R - высота к гипотенузе. 

Поскольку синус острого угла такого треугольника равен 3/5, это "египетский" треугольник, то есть он подобен треугольнику со сторонами 3,4,5.

У треугольника со стронами 3,4,5 высота равна 3*4/5 = 12/5; а у "четвертушки ромба" высота (по условию) R = 6, то есть коэффициент подобия равен 5/2, и боковая сторона ромба равна 5*5/2 = 25/2.

Периметр ромба равен P = 4*25/2 = 50,

а площадь S = P*R/2 = 50*6/2 = 150.

 

Если очень хочется "стандартного" решения, то половинки диагоналей ромба очевидно равны R/sinx и R/cosx, cosx = 4/5. Поэтому диагонали 20 и 15. Дальше элементарно - S = 20*15/2 = 150;

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота