Радиус основания цилиндра равен R. Параллельно его оси произведена плоскость. Она пересекает нижнее основание по хорде, которую видно из центра этого основания под углом 2α. Отрезок, соединяющий центр верхнего основания цилиндра с точкой круга нижнего основания, образует с плоскостью основания угол β. Определите площадь сечения.
В прямоугольном треугольнике АВН катет АН равен
АН=ВН*tg30° или АН=5*(√3/3) см. Или так:
В прямоугольном треугольнике АВН гипотенуза АВ=2*АН (АН - катет против угла 30°). Тогда по Пифагору 4АН²-АН²=25 или 3*АН²=25.
АН=5√3/3.
В прямоугольном треугольнике СВН угол СВН равен 45°, так как сумма острых углов прямоугольного треугольника равна 90°. Это равнобедренный треугольник и ВН=НС=5 см.
Тогда АС=АН+НС или АС=5√3/3 + 5 = (5√3/3+15)/3 см.
Площадь треугольника равна
S=(1/2)*BH*AC или
Sabc=(1/2)*5*((5√3/3 +15)/3)=25(√3+3)/6 ≈ 118,3/6 ≈19,72 см.
ответ: Sabc≈19,72 см.
Теперь найдём неизвестную сторону в треугольнике АВС. Зная, что треугольники подобны, имеем 12 относится к 3 как 16 относится к 4 и как неизвестная сторона относится к 2. Так как коэффициент пропорциональности равен 4, значит, неизвестная сторона в четыре раза больше соответствующей ей в меньшем треугольнике и равна 8.
Р треугольника АВС = 12 см+16см+8см=36см.