ответ: 1)Площадь треугольник вычисляется по формуле S=1\2b*h, где S - площадь треугольника, b - сторона треугольника, h - высота треугольника
Подставим имеющиеся данные в формулу. Получится: 40=1\2*10*h
40=10\2*h
40=5*h
h=40\5
h=8
ответ: высота треугольника равна 8 см.
2)S= 30*26*sin 150= 30*26*sin (150-30)= 30*26**sin 30= 30*26* 1/2= 16*26= 390
3) 22*11/2=121
4)Пусть высота, проведенная к стороне AB пересекает AB в точке M;
Треугольник CMB прямоугольный с катетом СМ = 11, равным половине гипотенузы BC = 22;
Отсюда угол MBC = 30°;
Опустим высоту AN на сторону BC;
В треугольнике ABN катет AN лежит напротив угла в 30° и, значит, тоже равен половине гипотенузы AB;
AN = 14 /2 = 7 см.
Объяснение:
ответ: 1)Площадь треугольник вычисляется по формуле S=1\2b*h, где S - площадь треугольника, b - сторона треугольника, h - высота треугольника
Подставим имеющиеся данные в формулу. Получится: 40=1\2*10*h
40=10\2*h
40=5*h
h=40\5
h=8
ответ: высота треугольника равна 8 см.
2)S= 30*26*sin 150= 30*26*sin (150-30)= 30*26**sin 30= 30*26* 1/2= 16*26= 390
3) 22*11/2=121
4)Пусть высота, проведенная к стороне AB пересекает AB в точке M;
Треугольник CMB прямоугольный с катетом СМ = 11, равным половине гипотенузы BC = 22;
Отсюда угол MBC = 30°;
Опустим высоту AN на сторону BC;
В треугольнике ABN катет AN лежит напротив угла в 30° и, значит, тоже равен половине гипотенузы AB;
AN = 14 /2 = 7 см.
Объяснение:
равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3.
tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α
MO_|_(MABCD), МО - высота пирамиды.
прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA
MO=d*tgα/2
Vпир=(1/3)*Sосн*H
Sосн=a², a- сторона основания пирамиды
диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС²
АВ=АС=а
d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2
S=(d/√2)²=d²/2
Vпир=(1/3)*(d²/2)*(d*tgα/2)
Vпир=(d³ *tgα)/12