Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°
ответ.∠РМК=60°
Объяснение:
Задача 1
1. Провести прямую.
2. На прямой от выбранной точки A отложить отрезок, равный данному отрезку ВС , и отметить другой конец отрезка B .
3. Провести окружность с центром A и радиусом, равным отрезку АВ .
4. Провести окружность с центром B и радиусом, равным отрезку АС .
5. Точка пересечения окружностей является третьей вершиной искомого треугольника.
Задача 2
1. Провести прямую.
2. На прямой от выбранной точки A отложить отрезок, равный данному отрезку MP .
3. Построить угол, равный данному ∡ M (вершина угла A , одна сторона угла лежит на прямой).
4. На другой стороне угла отложить отрезок, равный данному отрезку MK .
5. Соединить концы отрезков.