Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12
Обём конуса равен V=1/3пR^2H.Из центра проведем отрезки к концам хорды.Получим равнобедренный треугольник,т.к радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высатой и медианой.От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду пополам, и её половина равна 4корень из2.Тогда по теореме Пифагора найдём радиус:R=V16+32=V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник.Из етого треугольника найдём высоту H=R*tg60=4V3*V3=12см.Теперь найдём обём:V=1/3*п*48*12=192п см^3
Объяснение:
Обём конуса равен V=1/3пR^2H.Из центра проведем отрезки к концам хорды.Получим равнобедренный треугольник,т.к радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высатой и медианой.От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду пополам, и её половина равна 4корень из2.Тогда по теореме Пифагора найдём радиус:R=V16+32=V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник.Из етого треугольника найдём высоту H=R*tg60=4V3*V3=12см.Теперь найдём обём:V=1/3*п*48*12=192п см^3