Расстояние между центрами двух окружностей равно 2 см как расположены эти окружности по отношению друг к другу если их радиусы равны 3см и 5 см, 2см и 5 см надо
r1= а *корень из 3/ 6( радиус вписанной окуржности для равностороннего треугольника)
r2 а* корень из 3/3 (радиус описанной окружности)
вместо радиусов подставляешь формулы. и получаешь отношение v1 к v2.
дельши первый объм на второй. пи сократится, oo1 тоже. и в итоге получится: : : a * корень из 3 делить на 6 умножить на 3 делить на а* корень из 3. равно 3\6 или 1\2. ответ объёмы относятся как 1 к 2
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
ответ:
объяснение:
v1=пr1 в квадрате*оо1
v2=пr2 в квадрате*оо1
r1= а *корень из 3/ 6( радиус вписанной окуржности для равностороннего треугольника)
r2 а* корень из 3/3 (радиус описанной окружности)
вместо радиусов подставляешь формулы. и получаешь отношение v1 к v2.
дельши первый объм на второй. пи сократится, oo1 тоже. и в итоге получится: : : a * корень из 3 делить на 6 умножить на 3 делить на а* корень из 3. равно 3\6 или 1\2. ответ объёмы относятся как 1 к 2
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.