Расстояние от точки S до сторон правильного треугольника равна 10 см. Найдите расстояние от точки S до плоскости треугольника, если сторона треугольника равна 16 см.
Не было под рукой листочка А4, так что нарисовал в paint. Надеюсь, вам будет понятен чертеж.
Итак:
ABC- данный треугольник.(я взял остроугольный, чтобы было удобнее работать с ним)
AK,BG,CF-биссектрисы.(синие)
Они действительно пересеклись в одной точке X.
AM,BN,CL-медианы.(красные)
Они действительно пересеклись в одной точке Y.
AH1,BH2,CH3-высоты.(зелёные)
Они действительно пересеклись в одной точке Z.
Точки Х,У,Z можно соединить, получим окружность.
Вывод:
В неравнобедренном треугольнике точки пресечения биссектрис, медиан и высот лежат на одной окружности.
Ну, собственно, и все.
P.S. А насчет вывода я немного не уверен, просто у меня по счастливой случайности, такой чертеж вышел, а факт этот я не доказывал. Возможно, это и не будет окружностью вовсе, а просто треугольником. Но это решать не мне, а модераторам.
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Не было под рукой листочка А4, так что нарисовал в paint. Надеюсь, вам будет понятен чертеж.
Итак:
ABC- данный треугольник.(я взял остроугольный, чтобы было удобнее работать с ним)
AK,BG,CF-биссектрисы.(синие)
Они действительно пересеклись в одной точке X.
AM,BN,CL-медианы.(красные)
Они действительно пересеклись в одной точке Y.
AH1,BH2,CH3-высоты.(зелёные)
Они действительно пересеклись в одной точке Z.
Точки Х,У,Z можно соединить, получим окружность.
Вывод:
В неравнобедренном треугольнике точки пресечения биссектрис, медиан и высот лежат на одной окружности.
Ну, собственно, и все.
P.S. А насчет вывода я немного не уверен, просто у меня по счастливой случайности, такой чертеж вышел, а факт этот я не доказывал. Возможно, это и не будет окружностью вовсе, а просто треугольником. Но это решать не мне, а модераторам.