В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
superscholnik1772
superscholnik1772
02.09.2022 14:15 •  Геометрия

Равнобедренный треугольник с основанием м и углом при основании а вращается вокруг медианы.найти объем фигуры

Показать ответ
Ответ:
лёха562
лёха562
10.01.2020 13:25

Объяснение:

Пусть дан равносторонний треугольник АВС, с высотой АН и сторонами а. В него вписана окружность с центром в точке О и радиусом R.Найдем высоту треугольника.

Высота АН равностороннего треугольника,она же медиана и биссектриса. А значит по свойству медианы ВН=НС=ВС/2=а/2, по свойству высоты <AHB=<AHC=90°.

Рассмотрим треугольник АНС, он прямоугольный <H=90°, с гипотенузой а, и катетами НС=а/2, и АН.

Найдем катет АН треугольника по теореме Пифагора:

АН=√(АС²-НС²)=√(а²+а²/4).

Радиус окружности вписанной в треугольник:

R=√((p-AC)(p-CB)(p-AB)/p).

Найдем полу периметр:

p=(1/2)(AC+CB+AB)=(1/2)(а+а+а)=3а/2 см.

Подсчитаем радиус:

R=√((p-AC)(p-CB)(p-AB)/p=√((3а/2-а)(3а/2-а)(3а/2-а)/(3а/2))= а/√12 см.

Выразим из этого выражения а:

а=R√12.

Подставим в выражение для определения высоты:

АН=√(а²+а²/4)=√((R√12)²+(R√12/2)²)=√(9*R²)=√(9*64)=24 см.

ответ: АН = 24 см.

0,0(0 оценок)
Ответ:
minoraNika79
minoraNika79
19.01.2020 00:39
К двум окружностям, не имеющим общих точек, проведены три общие касательные: одна внешняя и две внутренние. Пусть А и В — точки пересечения общей внешней касательной с общими внутренними.
а) Докажите, что середина отрезка, соединяющего центры окружностей, одинаково удалена от точек А и В.
б) Найдите расстояние между точками А и В, если известно, что радиусы окружностей равны 6 и 3 соответственно, а расстояние между центрами окружностей равно 15.
Решение.
а) Назовем центры окружностей O_1 и O_2, точки касания с внешней касательной K и N соответственно, точки касания с внутренними — за L, L_1, M, M_1, точку пересечения внутренних касательных и линии центров за T. (см. рисунок). Очевидно, O_1KNO_2 — прямоугольная трапеция. Опустим из середины O_1O_2 перпендикуляр на KN — это будет средняя линия, поэтому для отрезка KN это будет серединный перпендикуляр. Осталось доказать, что KA=NB, тогда и для отрезка AB это будет серединный перпендикуляр.
Для этого воспользуемся следующим фактом: отрезки касательных к окружности, проведенных из одной точки, равны. Значит, AM_1=AN, BL_1=BK, L_1M=LM_1 (по два отрезка из точки T). Тогда:
AK=BK минус BA=BL_1 минус BA=BM плюс ML_1 минус BA=
=BN плюс LM_1 минус BA=BN плюс AM_1 минус AL минус BA=
=BN плюс AN минус AL минус BA=
=BN плюс AN минус BA минус AK=BN плюс BN минус AK.
Итак, AK=2BN минус AK, откуда AK=BN.

б) Поскольку O_1T:TO_2=3:6, находим O_1T=5, TO_2=10. Тогда, по теореме Пифагора, LT= корень из { 5 в степени 2 минус 3 в степени 2 }=4, аналогично, MT=8. Тогда L_1M=12. Но:
L_1M=L_1B минус BM=BK минус BN=BA плюс AK минус BN=BA.
Поэтому BA=12.

ответ: б)12
К двум окружностям радиусов 6 и 3 проведена общая касательная. Найдите расстояние между точками каса
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота