1) В равнобедренном треугольнике углы при основании равны. Зная угол при вершине и зная, что сумма углов треугольника равна 180 градусов, находим оставшиеся два угла при основании: (180 - 142) : 2 = 19, т.е. каждый угол при основании по 19°.
2) Находим угол АОС, зная, что развернутый угол ВОС равен 180 градусов: <AOC = 180 - 74 = 106°. В треугольнике АОС находим неизвестный угол ОАС: <OAC = 180 - 44 - 106 = 30°. Поскольку АО - биссектриса, то весь угол А равен: <A = <OAC* 2 = 30*2 = 60° Зная углы А и С, находим оставшийся неизвестный угол В: <B = 180 - <C - < A = 180 - 44 - 60 = 76°
(180 - 142) : 2 = 19, т.е. каждый угол при основании по 19°.
2) Находим угол АОС, зная, что развернутый угол ВОС равен 180 градусов:
<AOC = 180 - 74 = 106°.
В треугольнике АОС находим неизвестный угол ОАС:
<OAC = 180 - 44 - 106 = 30°.
Поскольку АО - биссектриса, то весь угол А равен:
<A = <OAC* 2 = 30*2 = 60°
Зная углы А и С, находим оставшийся неизвестный угол В:
<B = 180 - <C - < A = 180 - 44 - 60 = 76°
58 см
Объяснение:
Дано: ABCD - прямоугольная трапеция.
АС - биссектриса;
СН = 15 см - высота;
AD = 17 см.
Найти: Периметр ABCD
1. Рассмотрим Δ ACD.
∠1 = ∠2 (АС - биссектриса)
∠1 = ∠3 (накрест лежащие при AD || BC и секущей АС)
⇒ ∠2 = ∠3
Если у треугольника два угла равны, то этот треугольник — равнобедренный.⇒ ΔACD - равнобедренный.
⇒ AD = DC = 17 см
2. Рассмотрим ΔHCD - прямоугольный.
По теореме Пифагора:
HD² = CD² - HC²
HD² = 289 - 225 = 64
HD = √64 = 8 (см)
3. Рассмотрим ABCD.
AB = CH = 15 см
ВС = АН = 17 - 8 = 9 (см)
Периметр - сумма длин всех сторон.⇒ Р = AB + BC + CD + AD = 15 + 9 + 17 + 17 = 58 (см)