ΔАВС - равнобедренный , АС - основание , ∠В - противолежащий основанию. По свойствам равнобедренного треугольника: АВ=ВС - боковые стороны равны ∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны. Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный. ∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании . Сумма углов треугольника = 180° х+ 2х+2х=180 5х= 180 х=180/5 = 36° - ∠НАС ∠Н= ∠С= 36×2= 72 ° ⇒ Углы при основании ΔАВС ∠А=∠С= 72° ∠В= 180° - 72°×2= 180° - 144°=36° ответ: ∠В= 36°.
1) Назовем треуг. АBC. Рассмотрим его. Трег. равнобедр. значит его бок.стороны по 13 см. Проведем высоту из вершины В( не из основания, а из верхнего угла треуг.) Высота по св-тву равнобедр. треуг. явл. медианой и биссек. Значит высота ВD поделит основание АС на равные части( 10:2=5). Рассмотрим треуг. АВD. BD- катет, значит найдем его по теореме Пифагора. ( 13-5 возведем в квадрат: 169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60 ответ:60 см2.
По свойствам равнобедренного треугольника:
АВ=ВС - боковые стороны равны
∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны.
Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный.
∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании .
Сумма углов треугольника = 180°
х+ 2х+2х=180
5х= 180
х=180/5 = 36° - ∠НАС
∠Н= ∠С= 36×2= 72 ° ⇒
Углы при основании ΔАВС ∠А=∠С= 72°
∠В= 180° - 72°×2= 180° - 144°=36°
ответ: ∠В= 36°.
169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60
ответ:60 см2.