Теорема: "Если на одной стороне угла отложить равные отрезки и через их концы провести параллельные прямые, пересекающие другую сторону угла, то и на этой стороне угла отложатся равные между собой отрезки". Пусть дан отрезок АВ любой ОПРЕДЕЛЕННОЙ длины. Из точки начала данного отрезка А проводите прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываете 5 РАВНЫХ отрезков ЛЮБОЙ длины. Конец q последнего (пятого) отрезка соединяете с концом В данного Вам отрезка. Затем через концы e - h первых четырех отрезков проводите прямые, параллельные первой qB. Точки пересечения этих прямых с данным Вам отрезком и дадут Вам точки деления отрезка на 5 равных частей. Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая: 1. Проводим окружность 1 радиуса qh c центром в точке q (конец 5-го отрезка) на прямой АС. 2. Проводим окружность 2 радиуса qh c центром в точке m (точка пересечения окружности 2 с прямой qB). 3. Проводим окружность 3 радиуса qh c центром в точке h на прямой АС. 4. Через точки h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn -ромб по построению, так как все стороны равны радиусу qh.
Пусть дан отрезок АВ любой ОПРЕДЕЛЕННОЙ длины.
Из точки начала данного отрезка А проводите прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываете 5 РАВНЫХ отрезков ЛЮБОЙ длины. Конец q последнего (пятого) отрезка соединяете с концом В данного Вам отрезка.
Затем через концы e - h первых четырех отрезков проводите прямые, параллельные первой qB.
Точки пересечения этих прямых с данным Вам отрезком и дадут Вам точки деления отрезка на 5 равных частей.
Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая:
1. Проводим окружность 1 радиуса qh c центром в точке q (конец 5-го отрезка) на прямой АС.
2. Проводим окружность 2 радиуса qh c центром в точке m (точка пересечения окружности 2 с прямой qB).
3. Проводим окружность 3 радиуса qh c центром в точке h на прямой АС.
4. Через точки h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn -ромб по построению, так как все стороны равны радиусу qh.